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Orientation and ocular dominance maps in the primary visual cortex
of mammals are among the most thoroughly investigated of the pat-
terns in the cerebral cortex. A considerable amount of work has been
dedicated to unraveling both their detailed structure and the neural
mechanisms that underlie their formation and development. Many
schemes have been proposed, some of which are in competition. Some
models focus on development of receptive fields while others focus on
the structure of cortical maps, i.e., the arrangement of receptive field
properties across the cortex. Each model used different means to de-
termine its success at reproducing experimental map patterns, often
relying principally on visual comparison. Experimental data are be-
coming available that allow a more careful evaluation of models. In
this contribution more than 10 of the most prominent models of corti-
cal map formation and structure are critically evaluated and compared
with the most recent experimental findings from macaque striate cortex.
Comparisons are based on properties of the predicted or measured cor-
tical map patterns. We introduce several new measures for comparing
experimental and model map data that reveal important differences be-
tween models. We expect that the use of these measures will improve
current models by helping determine parameters to match model maps
to experimental data now becoming available from a variety of species.
Our study reveals that (1) despite apparent differences, many models
are based on similar principles and consequently make similar predic-
tions, (2) several models produce orientation map patterns that are not
consistent with the experimental data from macaques, regardless of the
plausibility of the models’ suggested physiological implementations,
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and (3) no models have yet fully accounted for both the local and the
global relationships between orientation and ocular dominance map
patterns.

1 Introduction __

Many cells in the mammalian primary visual cortex are binocular, re-
sponding better to stimulation of one eye over the other. They also
usually respond more strongly to bars or gratings of one particular ori-
entation (Hubel and Wiesel 1962, 1974). Early experiments with micro-
electrodes revealed a vertical organization, with columns of cells with
similar properties running between pia and white matter, perpendicular
to the cortical surface. These experiments also revealed a lateral orga-
nization characterized by mostly smooth changes in response properties
with lateral distance. The results culminated in the proposal of two seem-
ingly incompatible models of cortical organization—an “icecube” model
(Hubel and Wiesel 1977) and a “pinwheel” model (Braitenberg and Brait-
enberg 1979; Gotz 1987).

In recent years, imaging techniques (Blasdel 1992a,b; Blasdel and
Salama 1986; Grinvald ef al. 1986; Ts’o et al. 1990) have been developed
that allow an increasingly improved characterization of striate cortex or-
ganization. A refined picture of map organization has emerged (Bartfeld
and Grinvald 1992; Blasdel 1992a,b; Obermayer and Blasdel 1993; Ober-
mayer et al. 1992c). We now know that some elements of organization
from both the “icecube” and “pinwheel” models are present, but other
elements had to be modified in light of the new data. We briefly review
the recent findings in the macaque in Section 2.

Along with the study of cortical organization came a series of experi-
ments suggesting that important elements of the organization of orienta-
tion and ocular dominance in macaque striate cortex are not prespecified
but emerge during an activity-driven, self-organizing process. Occlu-
sion of one eye, for example, leads to dramatic changes in the lateral
organization of ocular dominance, which are to some extent reversible.
Strabismus leads to changes in the degree of binocularity. Exposure to
a restricted set of orientations causes changes in the distribution of cells
with different preferred orientations (for reviews see, for example, Hubel
etal. 1977; LeVay and Nelson 1991; Rauschecker 1991; Stryker et al. 1978).
These findings as well as an even larger body of data obtained from
other species (Goodman and Shatz 1993; Miller 1990) initiated consid-
erable theoretical work in which the principles underlying the develop-
ment of these patterns were explored. For a recent review see Miller
(1990). Many different models have been proposed during the past two
decades. However, the different approaches have rarely been thoroughly
compared with each other, nor have many of them been tested against
the recent experimental data.
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Hence it seems timely to critically evaluate the most prominent and
successful of the alternative modeling approaches. Such a study serves
several purposes: first, it may help to exclude certain approaches; second,
it may reveal that seemingly different models are actually related or based
on similar principles; third, it may help determine which quantities can be
computed to allow model comparisons; and, fourth, it may reveal which
of these quantities are most useful for deciding between hypotheses.

In our contribution we make a first step in this direction. We extract
principles of organization from recent data obtained from monkey striate
cortex and develop numerical tests to demonstrate these properties. We
apply these tests to the predictions of a large number of models for the
formation of orientation and ocular dominance maps. Model predictions
are also compared with available experimental data from the macaque.
Several models were found to predict patterns that are inconsistent with
the data, and thus are not sufficient models of macaque map structure
or development, regardless of the plausibility of the proposed physio-
logical mechanisms. As data become available from more species and
under manipulated developmental conditions, the tests developed here
will help compare model predictions with such data.

The paper is organized as follows. In Section 2 we briefly review the
experimental facts on the patterns of orientation and ocular dominance.
In Section 3 we critically evaluate some of the more prominent models,
comparing their results with each other and with the experimental data.
The discussion is organized around a set of principles we have found to
underlie cortical organization. We begin with the two major organizing
principles of continuity and diversity that are included in all model-
ing approaches and continue with less prominent, but equally important
features of the map patterns, where differences between models appear.
Section 4 summarizes the main results in a table and offers suggestions
for future work.

2 Macaque Striate Cortex Orientation and
Ocular Dominance Patterns

This section provides a summary of known experimental facts about
the lateral organization of orientation and ocular dominance columns
in macaque striate cortex. Most of the data being reviewed here were
obtained with optical recordings (Blasdel and Salama 1986), since no
other method can currently provide both high-resolution data of large
surface areas and fairly unambiguous estimates of orientation preferences
and ocular dominance in the same animal. Due to limitations of this
method, however, data can be obtained only from the superficial layers.
When comparing models, one must keep in mind that not all conclusions
drawn from these data will necessarily carry over to deeper layers of
cortex or be applicable in other species.
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This section is included for completeness and cannot treat in depth
all the issues involved. For a thorough and quantitative discussion we
refer the reader to other sources (Blasdel 1992a,b; Obermayer and Blasdel
1993; Obermayer et al. 1992¢; Swindale 1992). For experimental data on
the cortical mapping of other features such as retinotopy, color sensitivity,
and spatial frequency representation obtained by other methods, refer to
other sources, e.g., LeVay and Nelson (1991) and Tootell et al. (1988),
which also include large-scale maps of ocular dominance in all cortical
layers (see also Florence and Kaas 1992; Swindale et al. 1987).

Figure 1 shows the lateral spatial pattern of orientation selectivity in
the striate cortex of an adult macaque. Examples are shown of several
elements of the lateral organization that have been termed linear zones,
singularities, saddle points, and fractures. Linear zones are characterized
by isoorientation contours that run in parallel for distances of 0.5-1.0 mm.
Within these zones orientation preferences change linearly with lateral
distance along a line. Singularities are point-like regions around which
orientation preferences change by 180° along a closed path. Singularities
come in two varieties: one where orientation preferences increase with
clockwise motion around the center and one where they decrease. Sad-
dle points occur in the centers of regions of almost constant orientation
preference. Outward movement within two diagonally opposed quad-
rants, however, results in the same direction of rotation of orientation
preference while outward movement within the remaining quadrants ro-
tates orientation preference in the opposite sense. Finally, fractures are
line-like regions across which orientation preferences change rapidly.

Fractures, saddle points, and singularities are grouped together in the
recorded patterns (Swindale 1992). They are collectively called nonlinear
regions to indicate the reversals and breaks in the pattern of change of
orientation preference. Also note that the local direction of the isoorien-
tation contours is independent of the local preferred orientations. This is
true in both the linear and nonlinear zones.

Figure 2 shows the lateral spatial pattern of ocular dominance. This
pattern was recorded from the same cortical region of the same macaque
as in Figure 1. Regions of similar eye dominance are segregated in bands
that run in parallel for a considerable distance, but sometimes branch and
terminate.

Surprisingly the orientation preference and ocular dominance patterns
are not independent as had once been believed (Hubel et al. 1978), but
are correlated. For example, Figure 3a shows the Fourier transform of
the map of orientation preference with an arrow indicating the direction
perpendicular to the ocular dominance bands. At least for this region
of cortex, the spectrum is characterized by a slightly elliptic band of
modes with high amplitude centered around the origin. The minor axis
is aligned approximately perpendicular to the ocular dominance band
borders. Consequently, the map of orientation is stretched along this axis
and it is stretched such that its wavelength along this direction nearly
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Figure 1: The lateral spatial pattern of orientation preference in the striate cor-
tex of an adult macaque as revealed by optical imaging. The figure (Blasdel
1992a) shows a 4.1 x 3.0 mm surface region located near the border between
cortical areas 17 and 18 and close to the midline [animal NM1 in Obermayer
(1993)]. Local average orientation preference is indicated by color such that the
interval of 180° is mapped onto a color circle. Arrows indicate (1) linear zones,
(2) singularities, (3) saddle points, and (4) fractures.

matches the period of the ocular dominance pattern (Obermayer and
Blasdel 1993). Additionally, ocular dominance and orientation prefer-
ence slabs are each aligned with an individual common axis, and these
axes—defined as the major axes of the corresponding power spectra—are
orthogonal (“global orthogonality”) (Obermayer 1993).
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Figure 2: The lateral spatial pattern of ocular dominance in the macaque striate
cortex (Blasdel 1992a). Dark and light regions are dominated by input from
contralateral and ipsilateral eyes, respectively. Data were obtained from the
same cortical region of the same animal (NM1) as in Figure 1.

Other correlations become apparent in a contour plot representation.
Figure 4 displays a contour plot of the orientation map from Figure 1
overlaid with the borders of the ocular dominance bands from Figure 2.
Three properties of this pattern are noteworthy: (1) singularities tend to
align with the centers of ocular dominance bands; (2) saddle-points align,
too; and (3) isoorientation contours intersect borders of ocular dominance
bands at angles of approximately 90° locally, on a scale as fine as the small
meanderings of the ocular dominance bands (“local orthogonality”). For
a quantitative analysis, see Blasdel et al. (1994) and Obermayer and Blas-
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Figure 3: (a) The complex Fourier power spectrum of the spatial pattern of
orientation preference ||f(k)[J?, f(k) = Y exp(ikr)q(r) {sin[2¢(r)] + i cos[2¢(1)] }
recorded from another macaque [NM4 in Obermayer (1993)]. The arrows indi-
cate the direction perpendicular on average to the borders of the ocular domi-
nance bands, and the direction perpendicular to the border to area 18. (b) Nor-
malized autocorrelation function of preferred orientation as a function of dis-
tance. The figure shows the autocorrelation function for one of the Cartesian

components of the orientation vector. One hundred units of cortical distance
correspond to 1.252 mm.
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Figure 4: Macaque orientation and ocular dominance data combined (Ober-
mayer et al. 1992c; Obermayer and Blasdel 1993). Black contours separate bands
~ of opposite eye dominance. Light gray isoorientation contour lines indicate
intervals of 11.25°. The medium gray contour represents the preferred orienta-
tion 0°. Arrows indicate (1) singularities, (2) linear zones, (3) saddle points, and
(4) fractures.

del (1993). Correlations have also been reported for fractures, which tend
either to align with the centers of ocular dominance bands or to run per-
pendicular to their borders (Blasdel and Salama 1986). Also, regions in
the centers of ocular dominance bands tend to be less specifically tuned
to their preferred orientation than regions that receive balanced input
from both eyes (Blasdel 1992b; Livingstone and Hubel 1984).
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Despite the correlations between them, both ocular dominance and
orientation preference patterns exhibit irregularities and “global disor-
der.” Such disorder is exhibited in the locally varying width of the ocular
dominance bands as well as in their irregular termination and branching
pattern. Figure 3b illustrates the presence of disorder in the orientation
maps with an autocorrelation function along the Cartesian coordinates of
orientation preference. The autocorrelation function takes a Mexican-hat
shape with orientation preferences anticorrelated for distances around
300 pm. For neurons separated by longer distances, correlations decay
to zero after a few oscillations indicating global disorder.

3 Common Properties of Cortical Map Models

Many models for the structure and formation of orientation and ocular
dominance maps have been proposed. Although seemingly based on
different assumptions, most produce maps that visually resemble the
experimentally obtained maps. To sort through the conflicting models
we extended and analyzed some of the more prominent of the previously
proposed models and compared their predictions with the experimental
data.

We found that models that appear to be based on different principles
share many assumptions, and that these assumptions have a great impact
on the developed patterns. The following discussion is organized around
a list of these common assumptions, moving from the most generic to
the most specific. Increasingly detailed comparisons between model and
experimental data will be included along with each point.

To ease comparisons, we group models into categories based on sim-
ilarities in goals or implementation (Table 1). Structural and spectral
models attempt to characterize map patterns using schematic drawings
or concise equations. In structural models this description is formulated
in real space, while spectral models are formulated in Fourier space.

As model complexity increases, the pattern-generating equations are
meant to correspond more closely to actual physiological processes, re-
vealing more clearly the mechanisms underlying pattern formation.
Correlation-based learning models involve Hebbian learning and linear
intracortical interactions, while competitive Hebbian models are based
on nonlinear lateral interactions. Several models do not fit well in these
categories. The “generalized deformable” model of Yuille et al. (1991), for
example, includes aspects of both competitive Hebbian and correlation-
based learning models. Brief mathematical descriptions of some of the
models discussed are included in the Appendix.

3.1 Basic Assumptions. Models of cortical map formation and struc-
ture include a collection of neural units in a model cortical array, usually
on a two-dimensional grid. Usually each model neuron represents not
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Table 1: Categories of Models of Visual Cortical Maps, and Their Abbreviations
as Used in This Article.”

Class Model Reference
Structural Icecube Hubel and Wiesel (1974)
models Pinwheel Braitenberg and Braitenberg (1979)
Gotz Gotz (1987)
Baxter and Dow Baxter and Dow (1989)
Spectral Rojer and Schwartz Rojer and Schwartz (1990)
models Niebur and Worgotter ~ Niebur and Woérgotter (1993)
Swindale Swindale (1992a)
Correlation- Linsker Linsker (1986¢)
based Miller Miller et al. (1989),
learning Miller (1992, 1994)
Competitive =~ SOM-h Obermayer et al. (1990)
Hebbian SOM-1 Obermayer et al. (1992c)
EN Durbin and Mitchison (1990)
Other Tanaka Tanaka 1991b,
Miyashita and Tanaka (1992)
Yuille et al. Yuille et al. (1991)

“Two versions of the self-organizing map model were investigated: SOM-h (high-
dimensional weight vectors) and SOM-1 (low-dimensional feature vectors).

one real neuron, but a collection of real neurons located in a cortical col-
umn or in a single layer of cortex. Each model neuron has a receptive
field associated with it that defines how it responds to different types of
simulated visual input.

Properties of receptive fields are often described through preferences
for certain stimulus features, which in turn can be represented in various
ways. The two most common ways to represent feature preferences are
feature vectors and synaptic weight vectors.

In the feature vector representation, feature preferences are repre-
sented by a low-dimensional vector with independent components repre-
senting such features as ocular dominance, orientation preference, retino-
topic position, or preferred direction in color space. In the weight vector
‘representation a weight vector codes for the effective strength of the con-
nections between a (simple) cortical cell and a set of receptor cells in
an input layer. In these models, the weight vectors act as linear filters
on the distribution of input activity. Receptive fields are defined by the
strengths of the connections, and the locations and properties of the input
cells.

It has been suggested that receptive fields be described not only as
spatial filters but as spatiotemporal filters (e.g., Adelson and Bergen 1985;
Emerson et al. 1992). Other suggestions aim at the inclusion of nonlinear-
ities (Lehky et al. 1992) to account for complex cells, cells in higher brain
areas, or intracortical feedback (Reggia et al. 1992; Sirosh and Miikku-
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lainen 1994). These more realistic representations, however, have not yet
been extensively used in models of cortical map structure and formation.

The method chosen to represent feature preferences will necessarily
introduce assumptions about which features of visual input are impor-
tant and hence influence model predictions. Abstract feature vectors
allow one to generalize models to describe several phenomena within
the same framework, but require that the types of features to be repre-
sented be fully determined in advance. Receptive fields represented with
high-dimensional weight vectors can often be scrutinized for additional
feature preferences beyond those for which the model was designed.
High-dimensional models may also be explained with less abstracted
physiological principles. However, they require greater computational
resources and thus must generally be limited in other ways, such as
through linear development rules, lower cortical resolution, and fewer
simultaneous feature preferences.

3.2 Continuity and Diversity. It has long been recognized that two
fundamental characteristics of orientation and ocular dominance orga-
nization are continuity and diversity (e.g., Baxter and Dow 1989; Ober-
mayer et al. 1990; Swindale 1982).

Continuity stresses the fact that nearby columns of cells in striate cor-
tex tend to prefer stimuli with similar features. Similarity between feature
preferences is commonly defined as a small distance between their associ-
ated feature vectors calculated via a suitable norm. Models often enforce
continuity by combining feature preferences of nearby cells through av-
eraging or convolution operations, usually invoking a linear similarity
measure by linearly averaging over each vector component individually.
Other similarity measures are possible. The choice of similarity measure
will affect the resulting map patterns (Yuille et al. 1991).

Diversity states that the space of all possible feature preferences should
be filled as completely as possible, thus avoiding “perceptual scotomata”
(Swindale 1991). Diversity is often enforced by bandpass filtering of the
spatial pattern of feature preferences (Niebur and Worgotter 1993; Rojer
and Schwartz 1990), sometimes implemented using competitive networks
(Durbin and Mitchison 1990; Obermayer et al. 1990, 1992¢).

The two principles of continuity and diversity are partially contra-
dictory and are balanced in visual maps. There are some regions where
continuity is violated, such as the singularities and sharp fractures in the
orientation preference map. Similarly there are regions where continu-
ity is stressed over diversity. For example, the full range of orientation
preferences is not represented near the saddle points.

The continuity and diversity principles have been the fundamental
principles of almost all descriptive and developmental models of ori-
entation or ocular dominance map patterns. They were already imple-
mented in both Hubel and Wiesel’s original icecube model (Hubel and
Wiesel 1977) and in the early pinwheel models (Braitenberg and Brait-
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(a) Icecube Model (b) Pinwheel Model
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Figure 5: Schematic illustrations of two competing structural models. Heavy
borders and shading define columns of cells with opposite eye preference; light
borders separate columns of cells with similar preferred orientations, indicated
by short lines. (a) The icecube model of cortical organization (Hubel and Wiesel
1974). (b) Gotz" (1987) modified version of Braitenberg and Braitenberg’s pin-
wheel model (1979). Positive and negative singularities are indicated by “+”
and “—" where orientation preferences increase (decrease) with counterclock-
wise movement around the center of positive (negative) vortices.

enberg 1979; Gotz 1987) (Fig. 5). However, maps from certain models
that follow both of these principles may still differ in qualitative ways
from experimental data. For example, the icecube model obeys the prin-
ciples of continuity and diversity, but contains no singularities in the
orientation preference map and no branching or termination of ocular
dominance bands. Thus additional principles must be introduced. Some
of these principles will be seen as modifications of the ideas of continuity
and diversity.

3.3 Global Disorder. There are certain characteristic local features
of cortical maps that recur in all regions of the maps. However, corti-
cal maps do not consist of a crystal-like grid of exactly repeating units.
Rather the maps are characterized by the liquid-like properties of local
correlations and the absence of long-range order. These properties are re-
flected in the autocorrelation functions (Fig. 3b) of orientation and ocular
dominance with respect to distance along the map surface.! Note that
the principle of global disorder is distinct from the principle of diver-
sity. Models with feature preferences arranged in a repeating patchwork

IThe global disorder observed in cortical maps is the outcome of developmental
processes and is not simply due to a folding of the cortical surface.
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(Bauer and Dow 1991; Braitenberg 1985; Braitenberg and Braitenberg
1979; Dow and Bauer 1984; Gotz 1987) meet both the continuity and
diversity constraints, but do not show global disorder.?

Global disorder can be implemented in several ways. In some of the
structural models it arises due to the explicit inclusion of noise (Niebur
and Worgotter 1993; Rojer and Schwartz 1990; Swindale 1982, 1992). The
underlying assumption is that the map-organizing process is analogous
to bandpass filtered white noise and the maps are consequently fully
characterized by the filter parameters. Filtering is implemented either in
the spatial domain by convolving arrays of randomly oriented vectors
(Swindale 1982, 1992) with Mexican-hat type kernels or in the Fourier
domain by multiplying white noise with a bandpass filter (Niebur and
Worgotter 1993; Rojer and Schwartz 1990). Continuity and diversity arise
by suppressing both high- and low-frequency Fourier modes; global dis-
order results from applying the filter to white noise. The success of these
models (Fig. 6) effectively suggests that the underlying principles of con-
tinuity, diversity, and global disorder are the most important principles
of map structure.

Other models lead to a stationary state by an iterative process (Durbin
and Mitchison 1990; Goodhill and Willshaw 1990; Miller 1992; Miller
et al. 1989; Obermayer et al. 1992c; Swindale 1982, 1992). Usually there
are many possible stationary states. The overwhelming majority of these
tend to lack global order because of degeneracies due to translational
symmetry® in the underlying pattern-generating equations or due to frus-
tration (Swindale 1982, 1992). Random choice of initial conditions and/or
randomly directed movement in the state space, e.g. in response to ran-
dom inputs (Durbin and Mitchison 1990; Obermayer ef al. 1990, 1992¢c),
effectively cause a random choice of one of these stationary states. It is
overwhelmingly probable that this stationary state will lack long-range
order.

In competitive Hebbian models (Durbin and Mitchison 1990; Ober-
mayer et al. 1990, 1992¢), for example, an isotropic power spectrum and
Fourier eigenmodes are generated since the pattern-generating equations
are invariant under both translations and rotations. Similarity is enforced
by modifying the feature vectors of cells only in groups of neighboring
cells, moving them all closer to a presented input pattern. Diversity is
the result of competition, implemented as a selection rule in the self-
organizing map (Obermayer et al. 1990, 1992¢), and by a softmax non-
linearity in the elastic net (Durbin and Mitchison 1990). Presenting the

?Models that introduce periodic boundary conditions as a convenience are not in-
tended to imply that cortical patterns are periodic, and thus do not necessarily violate
the principle of global disorder.

31f the equations governing development are invariant under translation in cortical
and retinal coordinates, then Fourier transform leads to a set of independent equations,
one for each Fourier mode. If each of those equations has more than one stationary
state, the number of stationary states for the whole system is huge.
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inputs in a random order causes a random choice among the possible
stationary states and thus leads to global disorder.

3.4 Singularities and Linear Zones. Two features are prominent
when visually inspecting the orientation map in Figure 1: singularities,
points where all colors meet, and linear zones, regions with a rainbow
appearance.

Singularities are point-like discontinuities in the orientation map,
around which orientation preferences change by multiples of 180° along
a closed loop. Macaque striate cortex contains only two types of singular-
ities with vorticities* +1/2 and —1/2, respectively, with similar densities.
All developmental models investigated so far generate maps that have
this property. This is, however, not true for all of the structural models.
Braitenberg’s original proposal (Braitenberg 1985; Braitenberg and Brait-
enberg 1979), for example, included +1 singularities balanced by twice
their density of —1/2 singularities, and the original icecube model (Hubel
and Wiesel 1977) did not contain these features at all.

Linear zones are regions in the orientation map where isoorientation
lines are (1) straight and run in parallel for a considerable distance, and
where (2) isoorientation lines for similar intervals have similar spacing.
With the help of a heuristic measure of “parallelness” that can be obtained
by analyzing the gradients of orientation preference within small circu-
Jar regions (see Obermayer 1993) it has been shown that linear zones are
abundant in experimental maps. The existence of linear zones is related
to the power spectrum. Linear zones are abundant only if the power
spectrum has a strong bandpass characteristic, because linear zones are
characterized by a periodic change of orientation preferences with dis-
tance. The ON/OFF competition model (Miller 1992, 1994) and the model
of Tanaka (Miyashita and Tanaka 1992) generate maps with a power spec-
trum with significant energy in low-frequency modes, and lacking a sig-
nificant bandpass characteristic. Linear zones thus appear less common

Figure 6: Facing page. (a) Model output from Swindale’s (1992) spectral model
in the same format as Figure 4. Model parameters (see Appendix): model
size 512 x 512, h, = 1.32 x 10~ exp|—(1.3r% +13)/1400] - 0.77 x 10~ exp[—(r3 +
12)/2863], hy = 1.75x10~* exp(—(r] +1%)/823.0]—1.06 x 107* exp|— (13 +73)/1646],
2 = 20. Initial values are normally distributed around 0 with variance 0.0025,
map shown for £ = 500 with a = 10. The arrow indicates an area where
an orientation column is distorted, or “kinked” at an ocular dominance band
border. (b) Output from the same model with @ = 0 (orientation and ocular
dominance patterns not correlated); other parameters as in (a).

4Vorticity is defined as the factor of 360° by which orientation preferences increase
(decrease) with counterclockwise movement around the center of positive (negative)
vortices.
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in these models than in macaque maps. Linear zones occur in all other
models we studied, but are perhaps more prominent in the competitive
Hebbian models than in macaque maps.

3.5 Anisotropies. Experimental patterns of orientation preference
and ocular dominance are sometimes anisotropic, with elliptical, rather
than circular, power spectra. In some species, such as macaque, the
anisotropy in the ocular dominance pattern is strong enough to produce
roughly parallel bands of ocular dominance across half of area 17 (Flo-
rence and Kaas 1992). In the cat the orientation preference patterns are
anisotropic, while the ocular dominance bands are spotty and much less
aligned (Andersen et al. 1988; Diao et al. 1990).

In models of cortical map formation anisotropies can emerge as a
result of spontaneous symmetry breaking, pattern-generating equations
that are not invariant under rotation, or through appropriately chosen
boundary conditions. Models based on bandpass-filtered noise, for ex-
ample, employ anisotropic kernels or filters (Niebur and Worgotter 1993;
Rojer and Schwartz 1990; Swindale 1980, 1992) (Fig. 6a,b). Feature maps
(Durbin and Mitchison 1990; Goodhill and Willshaw 1990; Obermayer
et al. 1990, 1992¢).and some other models (Miller 1990; Miller et al. 1989)
use anisotropic neighborhood or cortical-interaction functions (Fig. 7a).
When the pattern-generating equations of a model are rotation invariant,
anisotropic maps can still be produced using appropriate boundary con-
ditions (Goodhill 1992) such as different shapes for the retina and cortex
(Jones et al. 1991) (Fig. 7b) or perturbations of the model equations at
the map edges, which can act as a seed leading to globally anisotropic
maps (Swindale 1980; Tanaka 1991b). Interestingly, no models have yet
been described that rely on spontaneous symmetry breaking to generate
anisotropy.

3.6 Biases in Feature Preferences. The diversity principle, as stated
above, must be modified to reflect that certain combinations of feature
preferences are more common. For example, some experimenters have
claimed that in certain or all layers of cortex more cells are responsive to
a few particular orientations than to others (e.g., Bauer and Dow 1989).
Other studies, including the optical imaging data from the superficial
layers of V1 (Fig. 8) do not show any overrepresentation of a particular
preferred orientation in the recorded areas (Finlay ef al. 1976; Hubel and
Wiesel 1968; Poggio et al. 1977). The optical imaging does, however,
reveal a bias toward cells with high orientation specificity (Obermayer
1993).

While the experimental data are incomplete, it seems clear that all
features are not represented equally. We find it instructive to consider
how such biases can and have been introduced into existing models.
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Figure 7: Anisotropic ocular dominance maps generated by the SOM-1 algo-
rithm. In (a) an anisotropic neighborhood function was used: hsom(r.rY) =
exp{—(r1 — r})2/(26%) — (r2 — 5)?/[2(1.30)?]}. o = 16.97. In (b) the effect of
differing cortical and retinal shapes is simulated using a cortical sheet of size
512 % 512 and a retinal sheet of size 128 x 512. The initial values of x(r) are
amended to x(r) = 0.25r; and training patterns are drawn from 0 < v, < 128,
0 < v, < 512, Gmax = 128, Zmax = 14.08. Other parameters in (a) and (b) as in
Figure 10.

Several structural models build in biases in preferred orientations
(Bauer and Dow 1991; Braitenberg 1985; Dow and Bauer 1984). Most
other models could also be modified to favor certain features. In models
where training patterns are used, sensory deprivation has been simu-
lated by biases in the training set. Training biases lead to biases in fea-
ture preferences (Obermayer e¢f al. 1992a), which may be consistent with
experimental findings (Blakemore and van Sluyters 1975; Stryker et al.
1978).

Increased ability to control the distribution of specificities and fea-
ture preferences distinguishes iterative spectral models (Swindale 1982,
1992) from similar one-step models (Niebur and Worgdtter 1993; Rojer
and Schwartz 1990). (See Appendix 5.2.1 and 5.2.2.) One-step models
generate a single, fixed distribution of orientation specificities (taken as
orientation vector length) (Fig. 9a). Although optical imaging tends to
underestimate orientation specificities through spatial averaging, it still
reveals a distribution favoring higher orientation specificity than the one-
step spectral models predict (Fig. 9b).
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Figure 8: Histogram showing that preferred orientations in optical imaging data
(animal NM1) are approximately evenly distributed. Each of 20 bins represents
orientations in a 9° range.

Iterative spectral models allow the inclusion of functions linking de-
velopment of distinct feature vector components and allow the possibility
to reproduce any observed distribution of orientation specificities, pre-
ferred orientations, or ocularities, although so far no attempt has been
made to precisely match experimental data. Linking functions can also be
used to give correlations between otherwise independent feature compo-
nents. Ultimately, however, the physiological basis of any linking func-
tion must be found if the model is to be used to predict map development.

3.7 Maps of Different Features Are Correlated. As explained in Sec-
tion 2, the patterns of ocular dominance and orientation preference in
macaque striate cortex are not independent. The two patterns are “glob-
ally orthogonal” such that the principal axes of the map patterns, mea-
sured on a length of about several ocular dominance bands, are not co-
incident, and may even be perpendicular. The two patterns also exhibit
“local orthogonality” such that singularities and saddle points tend to
align with the centers of ocular dominance bands, and isoorientation lines
intersect ocular dominance band borders at approximately right angles.

Spectral models (Niebur and Worgotter 1993; Rojer and Schwartz
1990; Swindale 1982, 1992) can be easily extended to include both oc-
ular dominance and orientation preferences in three-dimensional feature
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Figure 9: Histograms comparing the distribution of normalized orientation
specificities ¢ in maps from a one-step spectral model to experimental data.
(a) One-step spectral models always generate a fixed distribution favoring low
orientation specificities [data from the model of Niebur and Worgétter (1993)].
(b) Optical imaging tends to underestimate orientation specificity compared
to other experimental methods, yet still reveals a distribution favoring higher
specificities than the one-step spectral models.

vectors. An array of these three-dimensional vectors can be component-
wise convolved with a Mexican-hat kernel to generate ocular dominance
and orientation preference patterns simultaneously. The two map pat-
terns would not, however, be correlated unless the feature components
were linked during pattern generation.

The Appendix (5.2.2) demonstrates two examples of linking functions
that can be added to iterative spectral models. In a simple case, model
cells are encouraged to develop (three-dimensional) feature vectors with
approximately the same length. Thus cells with high monocularity will
tend to have low orientation specificity and vice versa, which leads to the
emergence of singularities in the centers of ocular dominance bands and
to slabs of similar orientation preference intersecting ocular dominance
borders preferentially at steep angles, i.e., local orthogonality.

A more physiologically interpretable linking function used by Swin-
dale (1992) couples the separate feature components by reducing the
speed at which orientation preference grows in regions where ocular-
ity is high. Singularities with low orientation specificity will more likely
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develop in the centers of single-eye dominance bands where growth of
orientation preference was slowed (Fig. 6a). Figure 6a and b compares
maps with and without the linking function. With the linking func-
tion, the otherwise distinct feature maps are locally coupled such that a
tendency toward local orthogonality between isoorientation and ocular
dominance borders develops.

Close inspection reveals several instances where the orientation pref-
erence map is distorted such that orientation domain borders are “kinked”
at the ocular dominance band borders (Fig. 6a, see arrow). Such kinks
are not seen in present macaque maps. Kinks in the model result from
the specific linking function used. This linking function also predicts
a course of development in which strong orientation preference occurs
first along the ocular dominance borders, and develops more slowly in
the monocular regions. No other known model produces these kinks.
Thus, observation of such a pattern in future experimental data from
any species would support this model’s developmental hypothesis.

A simple extension (see Appendix 5.2.1) to the model of Rojer and
Schwartz (1990), whereby both ocular dominance and orientation pref-
erence are derived from a single filtered noise array, generates maps
with complete local orthogonality. Yet global orthogonality cannot be
achieved in this simple model. Using an anisotropic filter would result
in anisotropic map patterns, but both patterns would necessarily be elon-
gated along the same axis.

Since Swindale’s (1992) model allows different filters for the orienta-
tion and ocular dominance components, the wavelengths and anisotropies
of the two patterns may be separately specified to give global orthogo-
nality while still maintaining the same degree of local orthogonality. Al-
though local and global orthogonality appear to be distinct properties of
macaque maps, no other model currently treats them independently.

In simulations of the simultaneous development of orientation and
ocular dominance, competitive Hebbian models (Figs. 10 and 11) gen-
erate patterns that include all of the types of local correlations between
these two patterns that have been observed in the macaque, but do not
reproduce global orthogonality.® These correlations have been demon-
strated for the self-organizing map (Obermayer ef al. 1992b,c) and are
also present when the elastic-net approach (Durbin and Mitchison 1990)
is appropriately extended (see Appendix 5.4.2). The correlations trivially
emerge when .patterns with the undesired combinations, e.g., low ori-
entation specificity combined with binocularity, are excluded from the
training set. However, they also occur when the training set includes all
possible combinations of feature preferences.

For the latter case, the emergence of correlations between features
can best be explained in the dimension-reduction framework (Fig. 12). In
this framework cortical maps are described as mappings between a high-

5Global orthogonality, however, can be heuristically introduced by allowing different
neighborhood functions to act on different components of the feature vector.
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Figure 10: Model output from the self-organizing map (Obermayer et al.
1990, 1992¢) in the format of Figure 4. Model size is 512 x 512 with pe-
riodic boundary conditions for the r; and r;-axes. Training patterns v =
{vx, vy, vy 5in(204), v, cos(2v4),v,} were chosen with uniform probability from
0 < vy, vy <128 0 < vg <, 0 < Uy < Jmaxs [¥2] < Zmax, Gmax = 51.2,
Zmax = D6.32. Initial values: x(r) = r1, y(r) = r2, ¢ = 0.01 * gmax, 2 = 0, with
¢ uniformly distributed over all angles. In the function hgom(-), o = 16.97.
Output is shown after 1,000,000 iterations with ¢ = 0.02.

dimensional feature space and a two-dimensional cortical space that obey
certain continuity and diversity constraints (Durbin and Mitchison 1990;
Kohonen 1987; Obermayer et al. 1990). When training patterns are pre-
sented with equal probability out of an appropriate manifold in feature
space, the magnification factor of the map between feature space and cor-
tical coordinates will be approximately constant. Consequently, regions
where one feature-vector component changes rapidly coincide with re-
gions where other components change slowly. In regions where two fea-
ture components change fairly rapidly, they tend to do so along orthog-
onal axes in the cortex. If orientation selectivity and ocular dominance
are represented by Cartesian coordinates as described in the Appendix,
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Figure 11: Model output from the elastic-net model (Durbin and Mitchison
1990) in the same format as Figure 4. Model size is 256 x 256 with periodic
boundary conditions for r; and ;. Initial values and training patterns as in
Figure 10, with gmax = 61.44, Zmax = 46.08. In the function ken(:), o = 2.771.
Output is shown after 2,000,000 iterations with o = 0.4, 8 = 0.0001.

the model maps will then develop with local orthogonality between ori-
entation and ocular dominance columns, similar to what has been found
in the macaque maps.

The generalized deformable model of Yuille (Yuille et al. 1991) can be

made to produce similar maps to the elastic-net model. Yet he points out
that the model may be generalized by modifying the definition of the
norm used to enforce similarity between neighboring neurons. Different
norms could lead to other types of correlations that might occur in other
species, such as coincident regions of rapid change in orientation and

ocular dominance.
The magnitude of the correlations between orientation preference and

ocularity cannot be adequately determined from the current experimental
data, because noise and slight movements of cortex during recording
tend to destroy such correlations. Thus while we note that the SOM,
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Figure 12: Dimension-reduction: This figure shows how points in a two-
dimensional array might be mapped into a three-dimensional feature space with
components ¢1, ¢, and ¢3, representing such features as visual field location
and ocular dominance. Dimension-reduction models often constrain the map
to fill the input space with near-uniform density while maintaining continuity.
This leads to maps where rapid changes in one feature vector component are
correlated with slow changes in other vector components.

EN, and Rojer and Schwartz models predict stronger correlations than
are observed experimentally, quantitative comparison is currently not
recommended.

3.8 Correlations between Orientation Preference Coordinates and
Cortical Coordinates. Several structural models imply particular rela-
tionships between the coordinate systems representing cortical location
and orientation preference. For example, they may arrange cells prefer-
ring horizontal (or radial) stimuli in columns running in one direction
across cortex while columns of cells preferring vertical (or concentric)
stimuli run in the perpendicular direction (Bauer and Dow 1991 ; Dow
and Bauer 1984).
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Figure 13: The pinwheel model (Braitenberg and Braitenberg 1979) tiles the
plane with hexagonal hypercolumns each containing a +1 singularity. Six —1/2
singularities will be formed at the vertices where adjacent hypercolumns meet.
Two versions of the model were suggested: (a) and (b). In each case, orien-
tation preferences (short bars) are nearly perfectly correlated with the cortical
orientation of the isoorientation lines (longer lines).

The implied link between coordinate systems is often visible if the
maps are drawn using oriented line segments to directly represent pre-
ferred orientations of cells. Displaying maps from the pinwheel models
(Braitenberg 1985; Braitenberg and Braitenberg 1979) in this way, line seg-
ments representing preferred orientations appear aligned along curves
that either radiate out from, or circle around the +1 vortices (Fig. 13a
and b). In this model, such an arrangement of the orientation selective
cells arises from a simple, plausible scheme of synaptic connections. Al-
though cortical maps are not as well ordered as this simplified model, this
predicted link between cortical and retinal coordinates could be present
to some degree.

A numerical test for such a link can be performed by comparing
preferred orientations with the orientation of the isoorientation region
contours. Alternatively the preferred orientations can be compared to
the local orientation of the gradient vector of orientation preference with
respect to cortical location, since this gradient vector is generally perpen-
dicular to the isoorientation borders. In separate versions of the pinwheel
model, the orientation preference vectors are either almost all perpendic-
ular to (Fig. 13a) or almost all parallel to (Fig. 13b) the orientation gradient
vectors. These trends are demonstrated in Figure 15g and h.

When analyzed in this way, the macaque optical imaging data show
no preferred angle of intersection between orientation preference and its
gradient vector (Fig. 15a) and thus no link between retinal and cortical
coordinates.

Links between orientation preference and cortical coordinates are com-
pletely absent from models that treat orientation preference as an abstract
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Figure 14: Orientation preference map from the correlation-based learning
model of Miller (1992). Oriented lines represent the orientation preferences
of an array of 32 x 32 cortical cells. Model parameters: ki = 1/9, o; = 3.0,
Came(x x') = exp(—{lx — ¥[|/1.21) = (1/9) exp(—|x — x'||/10.89), Cf(x,x') =
(—1/2)Csame(x,x'), arbor function A(r,x) = exp(—||t — x||/9.0). Initial synaptic
weights were randomly distributed with uniform probability in the interval
1.6 < ®i_,(r,x) < 2.4. Map shown for ¢ = 900 with o = 0.001.

component of a feature vector, as in the spectral models (Fig. 15f) and the
low-dimensional competitive Hebbian models (Fig. 15b). In models us-
ing the high-dimensional weight vector representation of receptive fields,
a link ofteri, but not necessarily, appears.

In one high-dimensional model (Miller 1992, 1994), cortical cells de-
velop receptive fields with ON and OFF subfields, based on hypothetical
correlations in the firing patterns of ON- and OFF-center geniculate cells
(see Appendix 5.3). Orientation preferences result from alignment of the
ON- and OFF-subfields, while intracortical interactions cause the orien-
tation preferences of neighboring cells to be organized into a map across

“the cortical surface (Fig. 14). Although intended primarily as a model
of development of single-cell orientation preferences, the model can ac-
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Figure 15: The histograms show the percentage of sites with a given difference
angle 0 < I < 90° between preferred orientation 0 < ¢ < 180° of a cortical cell
and the orientation 0 < ¢ < 180° on the cortical surface along which preferred
orientation changes most rapidly. The difference angle is computed as [ =
min(|¢ — g|,180° — |¢ — g|). where g is the angular component of the gradient
g = [V: ¢(r)] mod 180°, approximated as g1 = 0.5[(¢y, 11, — ¢r,—1,,) mod 180°],
2 = 0.5[(dhryrs41 — Gryra—1) mod 180°]. (a) In experimental data (Fig. 4), and
in competitive Hebbian models such as (b) the self-organizing map (Fig. 10),
the difference angle takes on all values with equal probability. (c)—(d) Two
correlation-based models predict a bias in the difference angles: (c) bias toward
low I for Miller’s model (Fig. 14) and (d) bias toward high [ for Linsker’s
(1986c) model. (e) Tanaka's correlation-based model (Miyashita and Tanaka
1992) and (f) spectral models such as Swindale’s model (Fig. 6a) predict an
even distribution. (g) The two variants of the pinwheel model predict near
100% correlations with I = 0 for Figure 13a, and (h) I = 90° for Figure 13b.
Data for (d) described in Figure 2 of Linsker (1986¢). These data contained only
10 distinct ¢ values, and had to be smoothed by gaussian filtering to allow
computation of gradients. Data for (e) provided by S. Tanaka.
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count for many of the prominent features of lateral map organization,
like singularities, and fractures.

Analyzing the maps generated by this model as above reveals that
there can occur a strong correlation between a cell’s orientation preference
in retinal coordinates and the orientation of the isoorientation bands in
cortical coordinates. This results in orientation preference vectors aligned
with the local direction of the orientation gradient (Fig. 15¢) similar to
but weaker than the correlations seen for the pinwheel model (Fig. 13b).
Although the relationship has not been well studied, the strength of the
correlations does depefid on model parameters, and there appear to be
some parameter regimes where such correlations are not apparent.

A related model by Linsker (1986¢) produces maps that show a similar
type of correlations (Fig. 15d) although in this case resembling the alter-
nate version of the pinwheel model (Fig. 13a). As Linsker (1986c) noted,
when cortical cells have receptive fields containing parallel subfields of
opposing types, such as excitatory and inhibitory (likewise for ON and
OFF), the degree of similarity between receptive fields will depend not
only on their orjentation but also on their relative location and internal
structure. Two cortical cells with identical receptive field structure that
are in partially overlapping locations in the retina would have greater
similarity if they were displaced along the axis of the subfield align-
ment than if they were displaced along the perpendicular axis. Thus if
the growth of receptive fields is influenced by the degree of receptive
field similarity, correlations can develop between orientation preference
(receptive field alignment) and the direction of orientation column align-
ment in cortex.

Tanaka’s model of correlation-based learning (Tanaka 1991a; Miyashita
and Tanaka 1992), as well as the high-dimensional version of the self-
organizing map (Obermayer et al. 1990), are both similar to Miller’s model
in that orientation preferences develop through alignment of subregions
in the receptive fields and growth of columnar structure is related to the
overlap of receptive fields. We have examined data from one sample
map from Tanaka’s model and found that it did not show any correla-
tions between retinal and cortical coordinates (Fig. 15¢). We have likewise
not observed the high-dimensional self-organizing map to predict a link
between coordinate systems (Fig. 15b). It is unknown whether such a
correlation could develop for some other choices of parameters.

Correlations between retinal and cortical coordinates are not seen in
‘macaque maps (Fig. 15a) although they could be present in maps from
other species. Since the measure of correlations introduced here has not
previously been used to test model and experimental data, additional
study will be required to determine the effect of model parameters on
such correlations, and whether they occur in differently organized maps
from other species.

Differences between the models above suggest a few tentative hy-
potheses. First, comparing the self-organizing map model and the mod-
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els of Linsker and Miller suggests that the presence of contrasting types
of subfields (ON/OFF or +/-) increases the likelihood that correlations
will develop. The phase of two receptive fields will have less impact on
their degree of overlap if there is a single type of subfield, as in the self-
organizing map model. Second, the self-organizing map and Tanaka’s
models indicate that the inclusion of some scatter in the topographic
projection from retinal to cortical locations could cause any correlation
that may develop between the direction of subfield alignment and recep-
tive field location in retinal coordinates to not be visible in the cortical
map. Third, correlations appear to be more likely in models that consider
only linear development rules, omitting refinements that could be due to
more complex nonlinear processes.

3.9 Orientation Maps Are Not a Linear Transformation of a Conser-
vative Vector Field. A spectral model proposed by Rojer and Schwartz
(1990) used the gradient of a bandpass-filtered noise pattern to charac-
terize cortical orientation maps (see Appendix 5.2.1). The model does
generate maps that superficially resemble experimentally observed maps
(Fig. 16). However, since the model maps are derived through a linear
mapping from a conservative vector field (in which vectors are always
perpendicular to the field gradient) the model predicts a unique type of
link between cortical and orientation preference coordinates (Erwin et al.
1993). This relationship restricts the range of patterns the model can
produce, as is easily demonstrated visually near singularities (Fig. 17).

One way to numerically demonstrate these correlations, and show
that they are not present in macaque data, is to multiply the preferred
orientations (180° periodic) in the maps by two to give a vector field
(360° periodic). Analyzing the resulting vector field in a manner similar
to the method of Figure 15 reveals that the direction of these vectors is
strongly correlated with the direction of their gradient vector field for
the model map. Similar correlations do not appear in spectral models
that do not involve conservative vector fields (e.g., Niebur and Worgotter
1993; Swindale 1982). However, such correlations do also occur in Go6tz’s
(1987) version of the pinwheel model. Analyzing the macaque data in a
similar manner reveals that it cannot be derived from a linear mapping
to a conservative field.

This discussion helps illuminate the utility of models that attempt
to characterize map patterns in simple equations. Without Rojer and
Schwartz’s model it is unlikely that we would have noted that macaque
orientation maps are not a linear function of a conservative vector field.
Knowing this property of experimental maps, new models should be
tested to ensure that such a relationship has not been unintentionally
included.
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Figure 16: Orientation and ocular dominance map from a combined version
of the models of Rojer and Schwartz (1990). Model size 512 x 512, H(s) =
(1 +e=ore=8/2=lIsIDy =1 x (1 4 g llsll=pc=8/2))=1_ = 4.96, § = 0.96, & = 1.5625.
Noise array n(r) values are normally distributed around 0 with variance 1.0.
Note that the medium gray orientation contour, which indicates 0°, exits all
of the +1/2 singularities (exactly one-half of the singularities) from the left or
right side only. See Figure 17 for an explanation.

4 Discussion

In this contribution we have investigated several models for the structure
and the formation of orientation and ocular dominance maps. The results
of our comparison between model predictions and experimental data
obtained from the upper layers of macaque striate cortex are summarized
in Table 2. References to articles on each model are given in Table 1.
Many of the models are also briefly described in the Appendix.

Data for our comparisons come primarily from implementations of
selected models on computers at our site. Generally our implementa-
tion followed closely the published description of the models and pa-
rameters. However, we extended a few models to include simultaneous
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Table 2: Summary Comparison of Model Predictions®

General Properties

Global Included in all models except several structural models
disorder (icecube, Gotz, pinwheel)
Power Miller, Yuille ef al., and Tanaka maps often have low-
spectrum pass, rather than bandpass power spectra
Anisotropies All models here can produce anisotropic map patterns
Orientation Maps
Singularities Absent from icecube model
Arise spontaneously in many models of map formation
Several structural models (Pinwheel, one form of Baxter
and Dow) suggested 360° periodic singularities
Overall orientations of singularities are restricted in Ro-
jer and Schwartz
Saddle points Absent only in icecube model
Fractures Structural models tend to omit fractures

All others include fractures as loci of rapid, continuous
orientation change

Miller, Linsker may include actual discontinuities, but
the map resolution is too low to allow a meaningful dis-
tinction between rapid change and discontinuity

Linear zones/

Present to varying degrees in all models
Less prominent in SOM-h, and correlation-based models

Linked
coordinates

Pinwheel, Gétz, and Baxter and Dow predict a link be-
tween a cell’s preferred orientation and the direction of
isoorientation columns

For some parameters, Miller and Linsker suggest a sim-
ilar link

A link has not been observed in macaque data, nor in
the remaining models

Conservative
maps

Rojer and Schwartz, and Go6tz maps are a linear trans-
formation of a conservative vector field
Macaque maps, as well as other model maps, are not

Distribution
of
specificities

Most models that include a notion of feature specificity
can be tuned to approximate experimentally observed
distributions of specificity

Among spectral models, the iterative approach (Swin-
dale) allows finer control over the distribution of fea-
ture specificities than the one-step approach (Rojer and
Schwartz, Niebur and Worgbtter)

"Model abbreviations are explained in Table 1.
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Table 2: Continued.

Orientation Due to the method of learning by examples, competi-
deprivation tive Hebbian models can easily simulate learning under
and bias exposure to a restricted or biased set of oriented visual

teatures
The other models here have not been applied to the same
problem

Ocular Dominance

Monocular All models that include ocular dominance can simulate

deprivation development or appearance of maps in monocularly de-
prived animals

Strabismus Miller, SOM, EN, and Tanaka models successfully repro-

duce development of maps in strabismic animals

Relationships between Ocular Dominance and Orientation Maps

Joint pattern Very few joint models of ocularity and orientation were
development proposed (SOM-h, SOM-], Swindale)
We have extended the EN and Rojer and Schwartz mod-
els to test their generalizability
The model of Miller is currently being similarly ex-
tended, with no conclusive results at present

Orientation All joint models correlate higher orientation specificity
specificity with binocularity and place singularities preferentially
and binoc- away from OD borders
ularity SOM-], EN, and Rojer and Schwartz include a greater

degree of correlation than observed in macaque

Local All joint models include some preference for ORI borders
orthogonality to be perpendicular to OD borders

SOM-], EN, and Rojer and Schwartz include a greater
degree of correlation than observed in macaque
Swindale’s model makes a unique fine-scale prediction
that has not been seen experimentally

Global Local and global orthogonality appear to be separate
orthogonality properties of experimental maps
: Only Swindale currently treats them separately in a
model

development of orientation and ocular dominance so that we could com-
pare them with the favorable results of the SOM models. We extended
only several representative models where the extensions seemed to be a
direct continuation of the model’s principles and equations. Our exten-
sions to the spectral model of Rojer and Schwartz, the correlation-based
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Figure 17: (a)-(d) Examples of vector fields (outside) and the associated orien-
tation map (inside, local tangents to the curves) for typical singularities that can
occur in the experimental data. The singularity (d) is an example of a feature
not allowed by the model of Rojer and Schwartz (1990), because the curl of the
associated vector field does not vanish at this location.

learning model of Miller, and the elastic-net model are described in Ap-
pendices 5.2.1, 5.3, and 5.4.2.

Among the pattern models, the spectral models perform better than
the earlier structural models, mainly because they account for global
disorder and for the coexistence of linear zones and singularities. The
filtered noise approach for orientation selectivity (Niebur and Worgotter
1993) and for ocular deminance (Rojer and Schwartz 1990) captures most
of the important features of the individual maps, except for the high
degree of feature selectivity that is observed in the macaque. Models
by Swindale (1980, 1982,-1992) provide the currently best description of
the individual orientation and ocular dominance patterns found in the
macaque. Additionally, they can account for many correlations between
the maps. Such a close match to experimental patterns has not yet been
achieved in the more physiological high-dimensional models.

The particular form of the function used in Swindale’s model to link
development of orientation and ocular dominance leads to a prediction
of occasional sudden changes in direction, or “kinks” in the isoorien-
tation region borders at ocular dominance borders. This prediction is
unique to Swindale’s model. If such kinks are found in future high-
resolution experimental images, it would support the model’s prediction
that orientation preference develops (or refines) first in binocular regions.
Swindale’s model is also unique in including separate mechanisms for
generating local and global orthogonality. This extra freedom may be
required to explain the structure of experimental maps.

Correlation-based learning models have led to valuable insight into
the role of Hebbian learning in receptive field development (Linsker
1986a,b; Miller 1992; Yuille et al. 1989). They were not expected to predict
the structure of cortical maps with as much precision. It is, however, in-



Orientation and Ocular Dominance 457

structive to note how the inclusion of realistic receptive field properties
impacts on the cortical map patterns. :

Correlation-based learning models perform well for ocular dominance
(Miller et al. 1989). When applied to the formation of orientation maps
(Linsker 1986¢c; Miller 1992), the ON/OFF-competition model under-
represents linear zones, and produces maps without a bandpass power
spectrum. These points might be related to the low resolution of the
maps necessitated by high computational demand.

Linsker’s model always predicts a link between preferred orientation
and direction of its vector gradient. Miller’s model also predicts a link for
some model parameters. Such a link is not present in the macaque data,
thus constraining the range of parameters for which the model could
apply to macaque data. If maps from different species are shown in the
future to possess such a link, this would provide strong support for the
correlation-based learning approach.

Competitive Hebbian models (Durbin and Mitchison 1990; Goodhill
and Willshaw 1990; Obermayer et al. 1990, 1992¢) lead to the currently
best description of the observed patterns from a developmental perspec-
tive. These models attempt to describe the developmental process on a
mesoscopic level, spatially as well as temporally, which has the advantage
that the level of description matches the resolution of the experimental
data. These models do not involve the microscopic concepts neuron,
synapse, and spike, which makes it somewhat more difficult to relate
model predictions to experimental data. Competitive Hebbian models
make qualitatively correct predictions with respect to all the principles
we have outlined above, except that they have not yet addressed the issue
of global orthogonality as separate from local orthogonality. These mod-
els could be extended by, for example, including separate neighborhood
functions for ocular dominance and orientation preference.

For correlations between orientation and ocular dominance maps, the
competitive Hebbian models give the most realistic predictions. As ex-
pected, the predictions of the extended elastic-net model closely match
the low-dimensional SOM algorithm. Since Yuille’s generalized deform-
able model (Yuille et al. 1991) can be reduced to the elastic net, it should
be equally capable of matching the experimental data if extended. Our
extended version of the Rojer and Schwartz model failed to reproduce
some of the experimentally observed correlations between orientation
and ocularity. This observation is not intended to show a deficiency
in their model as originally published. Rather, we wish to show how
easily the property of local orthogonality and qualitatively correct cor-
relations between singularities and ocularity emerge when the model is
extended in a simple way. In our simulations with an extended ver-
sion of the correlation-based learning model of Miller, maps with both
well-organized orientation and ocular dominance failed to develop. We
cannot, however, conclude that a more appropriate parameter regime
does not exist. Further work on this joint model is in progress.
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More stringent tests of the postulated mechanisms of activity-depen-
dent neural development must rely on experiments that (1) monitor the
actual timecourse of pattern formation and that (2) study pattern devel-
opment under experimentally modified conditions (deprivation experi-
ments). While progress has been made (Bonhoeffer et al. 1993; Léwel and
Singer 1993; Hubel et al. 1977; Kim and Bonhoeffer 1993; Obermayer et al.
1994; Rauschecker 1991; Tanaka 1991b,c) there is currently not enough
data on the spatial patterns available to constrain the present models.
Unfortunately, no anatomical correlate has yet been found for orienta-
tion selectivity and binocularity in upper layers of monkey striate cortex.
This quantity must be assessed physiologically and, therefore, after birth,
which currently limits investigations to the final, refinement phase of ori-
entation and ocular dominance development.

Further evidence to decide between proposed mechanisms might be
derived from interspecies comparisons. The underlying assumption is
that mechanisms of visual cortex development should be fairly universal
and that any model of value should be able to account for interspecies
variations. A few studies modeling cat and monkey patterns have been
reported (Jones et al. 1991; Miller 1992; Obermayer et al. 1990; Rojer and
Schwartz 1990; Swindale 1981). Yet, most studies focused on proper-
ties of the experimental patterns that arise from very basic assumptions
like broken rotational symmetry, which leads to global map anisotropies.
Consequently, most of the models were able to account for the observed
interspecies variations. As more and better data become available (e.g.,
Blasdel etal. 1993), fewer of the existing models may continue to be useful.

Finally, one would like to have relatively simple models that make
predictions about several aspects of cortical organization. Some current
models do make predictions about features other than orientation pref-
erence and ocular dominance, such as receptive field location (Durbin
and Mitchison 1990; Goodhill 1993; Jones ef al. 1991; Obermayer et al.
1990, 1992¢; Miyashita and Tanaka 1992; Yuille et al. 1991), color selectiv-
ity (Barrow and Bray 1992a), receptive field subfields, and spatial phase
(Barrow and Bray 1992b; Berns et al. 1993; Linsker 1986¢c; Miller 1992,
1994; Miyashita and Tanaka 1992; Yuille ef al. 1989), and correlations with
locations of cytochrome-oxidase blobs (e.g., Gotz 1988). Correlations be-
tween maps of different features are predicted by all of these models,
and could be tested in suitably designed experiments.

5 Appendix: Model Descriptions

5.1 General Nomenclature. This Appendix gives brief formulations
of several of the models included in this study. The model descriptions
are intended to (1) ease comparison between different approaches by pre-
senting models with common symbols, and (2) provide sufficient detail
to allow interpretation of model parameters given in figure captions. By
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necessity, the descriptions here reduce the complexity of some models.
Refer to the original references for fuller descriptions and more general
formulations.

Response properties of cortical cells or small cortical regions at each
cortical location r are represented by a feature vector ®(r). In the “low-
dimensional” representation each component stands for a selected re-
sponse property. Ocular dominance is represented by a scalar z(r) where
positive and negative numbers code for eye preferences and zero indi-
cates binocularity. Preferred orientation ¢(r) and degree of preference for
that orientation 4(r) are denoted by more convenient Cartesian compo-
nents ¢(r) = {q(r) sin[2¢(r)], g(r) cos[24(r)]} (Swindale 1982), where the
factor of two enforces the assumption that the orientation maps code for
the 180°-periodic orientation rather than the 360°-periodic direction of a
stimulus.® Additional features, such as the retinal location {x(x),y(x)}
of the receptive field or the preferred direction in color space, can be
incorporated. '

In the “high-dimensional” representation, the feature vector codes
for the effective strength of the connections between a cortical cell and
each of a set of N receptor cells in one or more input layers ®(r) =
{wi(r), wy(x), ..., wn(r)}.

The subscript r for cortical location will be omitted in the equations
below, except where necessary for clarity.

5.2 Spectral Models. Spectral models generate orientation and ocu-
lar dominance patterns by either convolving an array of random feature
vectors with an appropriate kernel h(r) in the space domain, or by filter-
ing a noise array with an appropriate filter H(s) in the Fourier domain.
Convolution or filtering may be carried out either iteratively or in one
step.

5.2.1 One-Step Spectral Models. The models of Rojer and Schwartz (1990).
Let n(r) be a white-noise pattern of independently chosen random num-
bers gaussian-distributed around 0 and let h(r) be the space-domain rep-
resentation of a bandpass filter H(s). Then an ocular dominance-like
pattern may be derived from

z=nxh (5.1)

where * denotes convolution.

An orientation map is derived through a similar process by taking
the vector gradient with respect to the cortical coordinates 7 and 7, of
the filtered noise array. The preferred orientation ¢ is then taken as the
angular direction of this vector divided by two, and in a simple extension

®This assumption is based in part on the appearance of the singularities.
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of the model, an orientation specificity 4 may be taken from the length
of the vector

0z Oz
87‘1 ! 61‘2
Due to the gradient operation, the orientation vector field is linearly re-

lated to a conservative field, and the model wrongly predicts correlations
between orientation preferences and cortical locations such that

¢ = (1/2) tan(uz/u1),q = ||[ull, where u = { } (5.2)

f gsin(2¢)dr, + g cos(2¢)dr, = 0 (5.3)

is fulfilled for every closed path (Erwin et al. 1993). Rojer and Schwartz
proposed separate models for orientation preference and ocular domi-
nance, and omitted orientation specificity. For comparing their predic-
tions with other models, we extend their model by considering z(r) to be
simultaneously an ocular dominance and the precursor of an orientation
array, and consider g to represent orientation specificity.

The model of Niebur and Worgitter (1993). An orientation map is derived
by applying a bandpass filter H(s) and an inverse Fourier transform IFT
to a white-noise array N(s) of independent, uniformly distributed ele-
ments in the Fourier domain. The Cartesian coordinates of the orien-
tation vector are given by the real and imaginary parts of the resulting
array I':

r
{gsin(2¢),q cos(2¢)}

I

IFT(H - N) (5.4)
{Re(T), Im(T")} 5.5)

5.2.2 Iterative Spectral Models. Iterative models begin with a random
distribution of small feature preferences ||®|| < 1. A feature map devel-
ops through iterative application of an update equation

q)H—l = q)t + a(q)t * h)f(q)t), O0<ax<l (56)

The function f(®) is chosen such that the components in ® are appropri-
ately coupled. A simple choice is

f(@)=@1-{el) (.7)

which encourages all feature vectors to grow toward a common length.
If & = {gsin(26),qcos(2¢),z} then equations 5.6 and 5.7 lead to corre-
lations between orientation selectivity and ocular dominance, which are
qualitatively similar to the correlations observed in the macaque.

The models of Swindale. Swindale (1992) chose to exert finer control
over the map structure by using differently sized Mexican-hat kernels h,
and h, for the ocular dominance and orientation components of @, and
a more complicated coupling function f. His update equations read

Zoe1 = 2¢ + oz x ) (1 = 22) (5.8)



Orientation and Ocular Dominance 461

b1 = {9sin(24),4cos(29)}
&y + ol hg)(1 — |zt ¥ Ba))'(1 — ). 5.9

For a = 0, equations 5.8 and 5.9 one recovers Swindale’s independent
models for ocular dominance (Swindale 1980) and orientation columns
(Swindale 1982).

5.3 Correlation-Based Learning Models. We present several mod-
els by Miller to illustrate the principles of correlation-based learning.
Miller’s ocular dominance development model (Miller et al. 1989) uses a
“high-dimensional” feature vector ®'(r,x) coding for the strength of con-
nection from each cortical location r to each retinal location x in each
of two eyes i € {0,1}. Activity patterns in the retina are described
by their two-point correlation function within, C¥*™¢(x, x’), and between,
Ciiff(x, x'), eyes, assuming that the coordinate systems in each eye are in
one-to-one correspondence. The feature vectors are initialized, and then
develop through an update equation, which in its simplest form is

iy = O+ QA X[+ (C™™ % B)) + [+ (CH % 317)],
0<axl (5.10)

The arbor function A(r, x) determines the location and overall size of the
receptive fields. The intracortical interaction function I (r,r’) represents
the effect of interactions between nearby cortical cells. It is often defined
as

I(r,Y) = (056(]x - ¥) +0.5)fexp(~lir — ¥||*/a7)
—kyexp(—|r — r'|*/903)] (5.11)

where §(-) is the Kronecker delta function.

Generally, nonlinearities will be added to equation 10 through addi-
tional terms, normalization of weight vectors, or limiting the maximum
and minimum values of each synaptic weight value.

Miller’s model for orientation preference (Miller 1992, 1994) is for-
mally similar, with the two feature vectors ®°N and #° now represent-
ing connections to separate populations of ON- and OFF-center cells in
the LGN. The two correlation functions C*™ and C%f again represent
the expected correlations between cells at a given distance in the retina
and of either the same or opposite cell types. The preferred orientations
and orientation specificities are determined from the scalar product of
the weight vectors with sinusoidal grating patterns.

For some parameters, e.g., for large o, the model implies a link be-
tween coordinate systems that has not been seen in experimental data.

We have extended the model equations to include orientation and
ocular dominance maps at the same time by including four separate types
of synapses—two eyes with two types of ganglion cells in each. So far we
have not found any set of correlation functions for which simulations lead
to the coordinated growth of orientation and ocular dominance maps.
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5.4 Competitive Hebbian Models. Competitive Hebbian models are
based on essentially the same set of assumptions as correlation-based
learning, with one crucial difference: the weighted summation of time-
averaged cortical cell outputs via the lateral interaction function I, equa-
tions 10 and 5.11, is replaced by a nonlinear lateral interaction in which
competition enhances the activity of units already highly activated in re-
sponse to individual stimuli. The most prominent competitive Hebbian
models are based on the self-organizing map (Kohonen 1982a,b) and the
elastic net (Durbin and Willshaw 1987). Yuille’s generalized deformable
model can also be reduced to a competitive Hebbian model (Yuille et al.
1991) by appropriate choice of parameters.

5.4.1 Self-Organizing Map Models. The self-organizing map model
(Obermayer et al. 1992¢) employs an iterative procedure, in which low-
dimensional feature vectors ® = {x,y,qsin(2¢),q cos(2¢),z} are changed
according to

;1 (r) = B,(r) + ahsom(r, ') [vipr — B(x)], O<a<1 (5.12)

At each iteration the stimulus v is chosen at random according to a given
probability distribution P(v). The function hsopm(+) is given by
hsom(r,¥') = exp(~|lr —r|/20%),
Y(v,{2(r)}) = mind(v,®(r)) (5.13)
where d(-,-) denotes the Euclidean distance.
A “high-dimensional” variant of the self-organizing map involves

synaptic weights ®(r) = {w;(r), wa(r),...,wy(r)}. In this model equa-
tion 5.12 is modified to

— (I)t(l') + ahSOM(r, l")VH_l
||®¢(x) + chsom(x, ¥')Ves ||’

with the distance function in equation 5.13 replaced by d(v,®) =1—-v-®.

Dp41(r) 0<axl1 (5.14)

5.4.2 The Elastic-Net Model. The elastic-net algorithm (Durbin and
Mitchison 1990; Durbin and Willshaw 1987) is an iterative procedure
with the update rule:

B (r) = Bur) + ahen(r, Vir1)[Vepr — O4(1)]
+ Y Bler) — 2u(x)] (5.15)

[l —rl}=1
with

hen(r, Vi) = exp{—d[vis1, ®(1)?/20%}/ 3 han(r, Vita) (5.16)
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d(-,-) is Euclidean distance. At each iteration, a stimulus v is chosen at
random according to a given probability distribution P(v).

We have extended previous modeling studies (Durbin and Mitchison
1990; Goodhill and Willshaw 1990) to include five-dimensional feature
vectors ® = {x,y,qsin(2¢),qcos(2¢),z}. The extended model correctly
predicts some of the correlations between the orientation and ocular dom-
inance maps (Fig. 11).
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