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ABSTRACT Peridinin-chlorophyll-protein (PCP) is a unique light-harvesting protein that uses carotenoids as its primary
light-absorbers. This paper theoretically investigates excitation transfer between carotenoids and chlorophylls in PCP of the
dinoflagellate Amphidinium carterae. Calculations based on a description of the electronic states of the participating
chromophores and on the atomic level structure of PCP seek to identify the mechanism and pathways of singlet excitation
flow. After light absorption the optically allowed states of peridinins share their electronic excitation in excitonic fashion, but
are not coupled strongly to chlorophyll residues in PCP. Instead, a gateway to chlorophyll Qy excitations is furnished through
a low-lying optically forbidden excited state, populated through internal conversion. Carbonyl group and non-hydrogen side
groups of peridinin are instrumental in achieving the respective coupling to chlorophyll. Triplet excitation transfer to peridinins,
mediated by electron exchange, is found to efficiently protect chlorophylls against photo-oxidation.

INTRODUCTION

About 40% of photosynthesis on earth occurs in aquatic
environments. Aquatic photosynthetic systems exhibit a
great genetic diversity comprising a dozen divisions, while
all terrestrial plants are derived from a single class of a
single division (Falkowski and Raven, 1997). This diversity
is manifested in a large variety of photosynthetic appara-
tuses. Photosynthetic dinoflagellates, a class of phytoplank-
ton that causes red tides and fish bite (Brown, 1997), pos-
sess a unique photosynthetic apparatus that extensively uses
both carotenoids and chlorophylls (Chls) as the main light
absorbers, as opposed to using mainly Chls. Most
dinoflagellates use peridinin as their predominant carot-
enoid. Dinoflagellates contain a membrane-bound light-
harvesting complex similar to that of higher plants (Ku¨hl-
brandt et al., 1994). In addition, they have developed a
water-soluble antenna, peridinin-chlorophyll-protein (PCP),
which has no sequence similarity with other known proteins
(Norris and Miller, 1994). The structure of PCP of the
speciesAmphidinium carterae(Hofmann et al., 1996),
shown in Fig. 1, displays a carotenoid-to-chlorophyll ratio
of 4:1, indicating the dominant role of carotenoids as light
absorbers. Upon light absorption, peridinins in PCP convey
their electronic excitation to Chla. Estimates of the effi-
ciency of this excitation transfer range from 88% (Bautista
et al., 1999b) to more than 95% (Song et al., 1976; Krueger
et al., submitted for publication). Chla passes this excitation
on to membrane-bound light-harvesting complexes and the
photosystem II (PS-II).

Besides the light-harvesting role, i.e., to provide the or-
ganism with energy necessary to drive its cellular reactions,
carotenoids perform a secondary, but not less significant,
role: they quench photo-oxidizing singlet oxygen and chlo-
rophyll triplet excitations that arise as unwanted by-prod-
ucts of light-harvesting. The quenching reaction involves
excitation transfer from chlorophyll to carotenoid triplet
states.

Energy levels of peridinin and chlorophyll, the chro-
mophores found in PCP, are depicted in Fig. 2. Two singlet
excited states of carotenoids (S1 and S2) are energetically
higher than and close to the Chla Qy and Qx excitations,
respectively. The excitation transfer might, thus, proceed
through two pathways, i.e., S13 Qy and S23 Qx. Due to
significant resonance of the S1 and Qx states, excitation
might also travel via an S13 Qx pathway.

Light absorption by peridinin involves a strongly allowed
transition from the ground state S0 to the excited S2 state
with a 0-0 transition energy of 19,800 cm21 (Akimoto et al.,
1996), as measured in both methanol and in PCP. The S2

states of peridinins are believed to couple excitonically, as
suggested by circular dichroism (CD) spectra (Song et al.,
1976). The interpretations of the CD spectra differ, how-
ever, favoring either a dimer (Song et al., 1976) or a
tetramer (Pilch and Pawlikowski, 1998) exciton model.
Excitonic states in other photosynthetic life forms, e.g.,
purple bacteria, are shown to play an important role in
excitation transfer (Hu et al., 1997, 1998; Ritz et al., 1998;
Damjanovićet al., 2000).

The S2 lifetime of peridinin in the organic solvents meth-
anol or CCl4 is equal to the time (tAB) for S23 S1 internal
conversion. In PCP, however, there is an alternative route of
relaxation from the S2 state, namely S2 3 Qx excitation
transfer (transfer timetAC). The S2 state lifetime in the
solvent and in PCP was found to be;190 fs (Akimoto et
al., 1996), indicating absence or inefficiency of excitation
transfer from this state. This follows from the well-known
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formula that describes the lifetimetA of a speciesA that can
reach a stateB (A 3 B) or stateC (A 3 C) governed by
reaction timestAB andtAC, respectively,

tA 5 tABtAC/~tAB 1 tAC!. (1)

In the case oftA 5 tAB one can concludetAC .. tAB.
Significant excitation transfer would have been marked by a
shortening of the S2 lifetime in the protein, compared to that
in the solvent environment. One can state, therefore, that the
S2 state of peridinin relaxes into the lower-lying S1 state,
instead of passing its excitation to Chls.

The effectiveness of the S1 3 Qy excitation transfer
depends strongly on the electronic properties of the S1 state.
In general, the effectiveness increases with the strength of
the S13 S0 transition dipole moment. The S1 state in pure
polyenes exhibits vanishing transition dipole moment due to
two symmetries, a C2h symmetry and an approximate alter-
nancy symmetry (Pariser, 1956; Koutecky, 1966; Cˇ ižek et
al., 1974). Obeying the C2h point group, the polyene ground
state S0 and the first excited state S1 transform according to
Ag symmetry, while the S2 state transforms according to Bu

symmetry. This symmetry forbids the S03 S1 (i.e., Ag3

Ag) transition, while it allows the S03 S2 (i.e., Ag3 Bu)
transition.

The alternancy symmetry arises from a topological fea-
ture of alternant hydrocarbons, according to which it is
possible to divide unsaturated carbon atoms into two equiv-
alent sets, “starred” (C*) and “unstarred” (C°) atoms, such
that no two atoms of a set are joined by a chemical bond.
The starred and unstarred atoms of C20H22 are displayed in
Fig. 3a. The presence of heteroatoms will break the alter-
nancy symmetry. The alternancy symmetry is responsible
for one-electron pairing properties of alternant hydrocar-
bons, i.e., molecular orbitals occur in pairs with energiesen

and2en 1 e, wheree is the same constant for all orbitals. The
one-electron pairing properties arise also for many-electron
states: the many-electron wavefunctions of polyenes, accord-
ing to the alternancy symmetry, are labeled “1” and “2”, e.g.,
11 Ag

2 (S0), 21 Ag
2 (S1), and 11 Bu

1 (S2), etc. The alternancy
symmetry forbids optical transitions between states of same
symmetry, i.e., transitions “1” 3 “1” and “2” 3 “2”
(Damjanovićet al., 1999). Consequently for polyenes, the 11

Ag
2 (S0)3 11 Bu

1 (S2) transition is allowed according to both
C2h and alternancy symmetry, while the 11 Ag

2 (S0)3 21 Ag
2

(S1) transition is forbidden according to both symmetries.
Carotenoids, however, do not exhibit the perfect symme-

try of polyenes. In Fig. 3,a andb the chemical structure of
peridinin is compared with that of the polyene C20H22; the
methyl groups and other functional groups attached to the
carbons of the conjugatedp-electron system distinguish
such carbons as heteroatoms, and effectively break the
alternancy symmetry. The C2h symmetry, in protein envi-
ronments, is broken due to distortions, but is retained ap-

FIGURE 1 Structure of the PCP trimer ofA. carterae.Chlorophylls
(black) and peridinins (white) are in licorice representation, helices are
represented as cylinders. The helices of one of the monomeric units are not
shown in order to better display the arrangement of chromophores within
a monomer; eight peridinins and two chlorophylls are organized into two
almost identical domains, an NH2-terminal domain and a COOH-terminal
domain, related by a pseudo-symmetry axis (produced with the program
VMD (Humphrey et al., 1996)).

FIGURE 2 Excitation energies of peridinin and Chl states in PCP ofA.
carterae. The carotenoid states are labeled S0 (ground state), S1 (first
excited state), and S2 (second excited state). The respective chlorophyll
states are labeled S0, Qy, and Qx. Solid lines represent spectroscopically
measured energy levels of peridinin and Chl; the dashed line indicates the
estimated excitation energy of the S1 state.
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proximately in the solution environment for some symmet-
ric carotenoids, e.g., lycopene displayed in Fig. 3c. For very
asymmetric carotenoids, e.g., peridinin shown in Fig. 3b,
which possesses a carbonyl group in the conjugatedp-elec-
tron system, both C2h and alternancy symmetries are
strongly broken, even in the solution environment.

Symmetry-breaking renders allowed electronic transi-
tions that are forbidden in the perfectly symmetric case. The
S1 state requires breaking of both the alternancy symmetry
and the geometrical C2h symmetry to gain absorption
strength. Both symmetries are broken in peridinin; however,
despite the symmetry-breaking, the transition dipole mo-
ment of the peridinin S1 state is believed to be small, as
indicated by a lack of experimental evidence of S1 state
absorption in solution.

The emission of the peridinin S1 state in solution was
measured to lie between 12,804 cm21 and 13,889 cm21,
depending on the solvent (Mimuro et al., 1992; Bautista et
al., 1999a). The S1 lifetime of peridinin in solution depends
strongly on the polarity of the solvent, ranging from 7 ps in
strongly polar solvents to 172 ps in non-polar solvents
(Bautista et al., 1999a). In PCP, the S1 state lifetime could
not be resolved by the time-correlated single-photon count-
ing method and, thus, has been estimated to be shorter than
the instrument response time of 3 ps (Akimoto et al., 1996).
The authors in Bautista et al. (1999b) estimate the lifetime
of the S1 state in PCP to be 3.1 ps. These measurements
suggest, according to Eq. 1, that the S1 state provides a
gateway for excitation transfer. Based on the rise time of
Chl a bleaching, the peridinin3 Chl a transfer time was
estimated to be 3.2 ps (Bautista et al., 1999b). Recent
measurements reported in Krueger et al. (submitted for
publication) estimate the energy transfer time to be;2.4 ps.

The atomic level structure of PCP fromAmphidinium (A.)
carteraehas recently become available through x-ray crys-
tallography (Hofmann et al., 1996), thus opening the door to
an explanation of the function of this protein through struc-
ture-based calculations. Due to the proximity of carotenoids
and chlorophylls in light-harvesting complexes, their elec-
tronic couplings need to be described through the full Cou-
lomb interaction (Coulomb mechanism) (Nagae et al., 1993;
Krueger et al., 1998a; Damjanovic´ et al., 1999), as opposed
to the customary dipole-dipole term (Fo¨rster, 1948) only.
Moreover, the proximity suggests that one considers also
the electron exchange coupling (Dexter, 1953) for excita-
tion transfer; the couplings decay exponentially with donor-
acceptor distance, and may become significant at short
distances. Triplet excitation transfer requires a change of
spin in excitation-deexcitation processes, and can therefore
proceed only through the exchange mechanism. Accord-
ingly, proximity of donor and acceptor molecules is re-
quired for efficient triplet excitation transfer.

In the following we briefly describe the structure of PCP
(Hofmann et al., 1996) and summarize the theoretical for-
malism used in calculations of electronic excitations of
carotenoids and Chls, as well as couplings and transfer rates
between them (Damjanovic´ et al., 1999). We then present
the pathways and mechanisms of excitation transfer in PCP
suggested by the calculations.

STRUCTURE

Peridinin-chlorophylla-protein forms a trimer of 48 helices that provide a
scaffold for 24 peridinins and six chlorophylls. The trimeric structure is
depicted in Fig. 1. In each monomer, eight peridinins and two chlorophylls
are organized into two almost identical domains, an NH2-terminal domain,
and a COOH-terminal domain, related by a pseudo-symmetry axis. Fig. 4
shows the arrangement of four peridinins surrounding a chlorophyll in the
NH2-terminal domain.

FIGURE 3 Comparison of polyene and carotenoid structures. (a) Chem-
ical structure (top) and rendered representation (bottom) of the polyene
C20H22 (hydrogen atoms not shown), chemical structure, and rendered
representation not drawn to the same scale. The structure displays the C2h

rotational symmetry; alternately, symmetry is shown in labeling of conju-
gated carbon atoms as “starred” and “unstarred.” (b) Chemical structure of
peridinin and rendered representation of per611 in PCP (conjugated system
is shown in licorice representation). The oxygen atoms are shown in black,
methyl groups are shown as spheres. (c) Chemical structure of lycopene
and rendered representation of the geometry of lycopene in LH2 ofRho-
dospirillum molischianum.The conjugated system is shown in licorice
representation, methyl groups are shown as spheres. Rendered representa-
tions were produced with the program VMD (Humphrey et al., 1996).
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THEORY

The rate of excitation transfer between donorD and acceptorA, according
to Fermi’s golden rule (Fo¨rster, 1948; Dexter, 1953) is,

kDA 5
2p

\
uUDAu2ESD~E!SA~E!dE. (2)

Here, UDA is the electronic coupling between donor and acceptor, and
SD(E) andSA(E) are defined (Davidovich and Knox, 1979; Agranovich and
Galanin, 1982; Hu et al., manuscript in preparation) as

SD~E! 5
fD~E!

E3 SE
E50

`

dE
fD~E!

E3 D21

SA~E! 5
«A~E!

E SE
E50

`

dE
«A~E!

E D21

. (3)

Here fD(E) and«A(E) are the normalized emission spectrum of the donor
and the absorption molar extinction coefficient of the acceptor, respec-
tively. In the following, fD(E) and «A(E) are approximated by Gaussians
G(ED(A), GD(A)) with ED(A) the energy of the emission or absorption
maximum, andGD(A) the full width at half-maximum, two parameters
being estimated from spectroscopic data. Fluorescence from the S1 state of
peridinin in CS2 has been measured (Mimuro et al., 1992) and yieldsED 5
13,333 cm21, GD 5 3,200 cm21. Because the influence of the protein
surrounding of peridinin in PCP is expected to be similar to that of polar
solvents (Bautista et al., 1999a), we will use theED value measured in
methanol, i.e.,ED 5 13,870 cm21. Unfortunately, fluorescence from the S2

state of peridinin has not been observed; based solely on the similarity
between peridinin andb-carotene absorption spectra, we use values cor-
responding to the fluorescence spectrum ofb-carotene in ethanol (Shreve
et al., 1991), namely,ED 5 19,170 cm21, GD 5 3,500 cm21. For the S1
state absorption we useEA 5 16,000 cm21, as suggested in Akimoto et al.
(1996), and we assumeGA 5 3,200 cm21 (the same as for the S1 state
emission). The S2 state absorption spectrum in PCP we approximate, rather
crudely, as a Gaussian withEA 5 21,739 cm21 andGA 5 4,315 cm21. The

Gaussian parameters to describe the Chla absorption were determined
from measurements of the PCP absorption spectrum in Akimoto et al.
(1996) asED 5 14,992 cm21, GD 5 291 cm21 for the Qy state, andED 5
16,129 cm21, GD 5 1,041 cm21 for the Qx state. The spectral overlap
integrals* SD(E) SA(E) dEare then evaluated as 0.45 eV21 (S23Qx), 0.08
eV21 (S23 Qy), 1.31 eV21 (S13 Qy), 0.42 (S13 Qx), 0.79 eV21 (S13
S1), 0.69 eV21 (S23 S2). A value of 1 eV21 is assumed for the spectral
overlap integral between triplet excited states, as suggested in Nagae et al.
(1993).

The electronic couplingUDA between chromophores, cf. Eq. 2, can be
split into two additive contributions

UDA 5 UDA
c 1 UDA

ex , (4)

corresponding to a direct Coulomb and an electron exchange term (Fo¨rster,
1948; Dexter, 1953). Following Damjanovic´ et al. (1999) these terms can
be expanded

UDA
c(ex) 5 O

i, j
[ID

O
R,S
[IA

Cij,RS
c(ex) 3 ^C*DusmOj

iuCD& 3 ^CAus2mOS
RuC*A&,

(5)

whereID and IA denote the set of atomic orbital indices of the donor and
acceptor molecules, andCij,RS

c(ex) describes the Coulomb or exchange inte-
grals involving atomic orbitals labeled byi, j, R, andS. The spin tensor
operatorssmÔj

i, s2mÔS
R prompt the intramolecular transitionsuCD&3 uC*D&,

uCA& 3 uC*A& between the ground and singlet excited states of donor and
acceptor. Coulomb interaction does not involve spin change (s5 0), while
electron exchange can proceed between singlet and triplet states, and is
described by the spin tensor operatorssmÔj

i ands2mÔj
i of singlet (rank s5

0) and triplet type (rank s5 1), respectively.
The Coulomb integralCij,RS

c can be approximated (Nagae et al., 1993)
as Sij (e

2/Rij,RS) SRS, where Sij and SRS denote atomic-orbital overlap
integrals, andRij,RS is the distance between the midpoint of atomsi and j
and the midpoint of atomsR andS. The transition densities are placed at
atomic centers and at midpoints between atomic centers; unfortunately, this
procedure neglects the spatial distribution of thep orbitals, and a simple 1/r
dependence to model the Coulomb interaction might be an oversimplification.

The exchange integralsCij,RS
ex have been calculated as described in

Damjanovićet al. (1999) by accounting for the contribution of the bridge
atoms (hydrogen and carbon atoms bonded to the conjugated system) to the

FIGURE 4 Stereo view of the four peri-
dinins and a chlorophyll belonging to the
NH2-terminal domain (see Fig. 1). The rep-
resentation of Chl includes its phytol tail;
the tail is omitted in Fig. 1 (produced with
the program VMD (Humphrey et al.,
1996)).
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exchange interaction. Hydrogen atoms of peridinin and chlorophyll, not
resolved in the crystal structure of PCP (Hofmann et al., 1996), were added
using the program QUANTA (MSI, 1997). Fig. 5 depicts peridinin and
chlorophyll atoms belonging to the conjugatedp-system as well as the
bridge atoms.

We used the valuen 5 1 for the refractive index in our calculations. It
is not clear which value ofn would be the most appropriate for the
particular protein surrounding peridinin and Chl in PCP. The influence of
protein on pigment charge distributions could, in principle, be studied by
quantum chemistry calculations. In case of a dipole-dipole interaction, the
Förster rate of energy transfer scales withn as (1/n2)[(n2 1 2)/3]4

(Agranovich and Galanin, 1982). Forn 5 1.6 (the value estimated for PCP
(Kleima et al., 2000a)) the latter scaling factor is 0.81; forn 5 1 the scaling
factor is 1.0. We therefore believe that a choice ofn 5 1 does not result in
a significant error.

The transition density matrix elementŝ C*DusmÔj
iuCD& and

^CAusmÔS
RuC*A& in (Eq. 5) (Nagae et al., 1993; Damjanovic´ et al., 1999) and

the wavefunctions of carotenoid and Chl excited electronic states were
described through a semi-empirical Pariser-Parr-Pople, self-consistent
field, configuration interaction (PPP-SCF-CI) method. The Pariser-Parr-
Pople (PPP) Hamiltonian (Pariser and Parr, 1953; Pople, 1953)

H 5 O
i,j

ZiZjRij 1 O
i,s
S2I i 2 O

jÞi

ZjRijDnis

1 O
iÞj,s

tijcis
1cjs 1

1

2 O
i, j, s,s̃

Rijnisnis̃

(6)

involves orbitals ofp-type only.cis
1 andcjs are creation and annihilation

operators acting on the mutually orthogonal atomicp-orbitals; the operator
nis 5 cis

1cis is the corresponding number operator;Rij is the effective
electron-electron repulsion integral between an electron in atomic orbital at
site i and one in orbital at sitej; tij is the resonance integral between atoms
i andj; I i is the effective ionization potential of an orbital at sitei; Zi is the
net charge of the core at atomi which was chosen asZi 5 1.

The empirical expression fortij and the Ohno formula forRij in (Eq. 6)
are provided in Table 1. The semi-empirical parameters for the PPP
Hamiltonian are also listed in Table 1. The parameters for carbon, oxygen,
and nitrogen have been taken from Dewar and Morita (1969). The carbons
with methyl groups attached to them have been denoted as CM. To
determine parameters for heteroatom CM, we exploit the relationship
between the valence state ionization potentials of a heteroatom X (IX), and
of a trigonal 2pp carbon orbital (taken asIC(p) 5 11.16 eV in our
calculations), with the so-called Coulomb parameter for this heteroatom,
hX (Leach, 1967), defined as

hX 5 @~IX 2 IC~p!!/IC~p!#~a/b!. (7)

Here parametersa andb are27.2 eV and23.0 eV, respectively (Leach,
1967). The Coulomb parameter for CM ranges fromhM 5 20.3 tohM 5
20.5 (Leach, 1967); for our calculations we choose the valuehM 5 20.3.
This yields a value forIM of 9.76 eV. Exploiting an approximate propor-
tionality between Ik

1/2 and Rkk (Dewar and Morita, 1969) we estimate for
the latter a value of 10.41 eV (see Table 1).

A (PPP-SCF-CI) calculation, including single and double (S1 D)
excited p-electron configurations, was performed for singlet states of
peridinins and Chl. The (S1 D) basis is necessary for a description of the
carotenoid S1 state, since this state is dominated by doubly excited con-
figurations (Schulten and Karplus, 1972; Tavan and Schulten, 1986). To
describe chromophore triplet states we used singly (S) excitedp-electron
configurations only.

Electronic structure calculations were performed for crystal structure
geometries (Hofmann et al., 1996) of the four peridinins shown in Fig. 4,
i.e., per611, per612, per613, and per614. Chlorophyll electronic structure
calculations are based on geometries of a symmetric chlorophyll analog,
the structure of which is displayed in Fig. 5,inset.The analog is symmetric
about the magnesium atom; it does not possess the double bond of ring II
which is present in Chls, and the CBB atom of Chl (which is indicated in
Fig. 5) is treated as an oxygen atom. For the PPP-SCF-CI calculations
performed on the analog structure, the Qx and the Qy states are easily
identified. For the calculations performed instead on the real Chl structure,
the electronic states mix, and it is impossible to identify them. We believe
that the error arising from modeling of chlorophylls with a symmetric
analog is insignificant compared to systematic errors that are reflected in
transition dipole moments (see below).

RESULTS AND DISCUSSION

We present here only results for calculations on chro-
mophores belonging to the NH2-terminal cluster, expecting
that, due to a pseudo-symmetry of the COOH and the NH2

terminal cluster (see Fig. 1), the qualitative conclusions
drawn from our calculations will also hold for the COOH-
terminal cluster.

Peridinin symmetry and peridinin models

The effect of symmetry breaking on the S1 state transition
dipole moment and excitation transfer from this state is
investigated through three parametrizations of the PPP
Hamiltonian. The first set of parameters treats all the atoms

FIGURE 5 Peridinin and chlorophyll models used in our calculations:
the conjugated systems of per613 (white) and chl601 (black) are shown in
licorice representation. Carbon and hydrogen atoms bonded to the conju-
gated systems are shown as spheres (produced with the program VMD
(Humphrey et al., 1996)). Theinset shows the conjugated system of the
symmetric chlorophyll analog used to calculate transition density matrix
elements.
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belonging to the conjugated system of peridinin as carbon
atoms (e.g., the oxygen atom is treated as a carbon). Since
there are no heteroatoms, alternancy symmetry applies to
this idealized model. The second parametrization distin-
guishes heteroatoms OC and CC. These atoms are indicated
in the peridinin structure shown in Fig. 5. The third param-
etrization treats OC and CC, as well as CM, as heteroatoms,
and is therefore, in principle, the most realistic. Even more
realistic calculations of peridinin electronic states would
also account for the allene group and the lactone ring.
However, we are not aware of available parametrizations of
these chemical groups, and at the moment we neglect them
in our description.

The first, second, and third parametrization will be re-
ferred to as “symmetric,” “no methyl,” and “methyl” pa-
rametrizations, respectively. The increased symmetry
breaking in going from “symmetric” to the “methyl” pa-
rametrization is expected to result in an increase of the S1

state transition dipole moment and its coupling to the chlo-
rophyll excitations. By comparing the transfer times calcu-
lated with the three parametrizations, we seek to demon-
strate the role of symmetry breaking in achieving fast, i.e.,
efficient, energy transfer.

Transition dipole moments of peridinin states

Table 2 displays transition dipole moments of per611,
per612, per613, and per614 S1 and S2 states, calculated with
the three parameter sets. As expected, the transition dipole
moment of the S1 state for the “symmetric” parameter set
vanishes, to the level of accuracy of our calculations. The
“no methyl” and “methyl” parametrizations result in non-

vanishing transition dipole moments of the S1 state, due to
intensity borrowing from the allowed S2 state through sym-
metry breaking. Because the symmetry is broken more
strongly in the “methyl” parameter set than in the “no-
methyl” parametrization, the calculated S1 transition dipole
moments are largest for the “methyl” parametrization. In
parallel, the S2 transition dipole moments decrease in going
from the “symmetric” to the “no-methyl” to the “methyl”
parametrization.

The quality of the “methyl” parametrization has been
tested for lycopene. Lycopene has methyl sidegroups, but
no other sidegroups that break the polyene symmetry, and
its geometry in LH2 fromRhodospirillum molischianumis
known. The transition dipole moments of the S1 and S2

transitions have been estimated from the emission spectra of
these states (Zhang et al., 2000). Our calculations with the
“methyl” parametrization reproduce the experimentally
measured transition dipoles within 20%, suggesting that the
methyl parametrization approximates the excited state
wavefunctions well.

The values of transition dipole moments of S2 peridinin
states in PCP were estimated in the range 10.6–12.4 Debye
(D) (Carbonera et al., 1999), suggesting that our calculated
S2 state transition dipole moments that lie between 13.5 and
14.0 D are slightly too large. The S1 emission of peridinin
has been observed (Mimuro et al., 1992); however, its S1

absorption in solution has not been observed. An estimate of
the order of magnitude of the upper bound of the transition
dipole moment for a transition that is not detectable in
absorption spectroscopy can be obtained from measure-
ments on neurosporene in LH2 fromRhodobacter spha-
eroides.Neurosporene S1 absorption cannot be detected, but
the S1 transition dipole moment has been estimated from
comparison between S1 and S2 fluorescence spectra to be
0.86 D (Zhang et al., 2000). This measurement shows that
transitions with transition dipole moments of around 1 D
can still be undetectable in absorption spectroscopy. One
expects that the S1 transition of peridinin is allowed more
than the neurosporene S1 transition, because peridinin is
more asymmetric than neurosporene. The “no-methyl” pa-
rametrization for peridinin yields S1 transition dipole mo-
ment values between 0.08 D and 0.36 D (cf. Table 2), i.e.,
values that are smaller than the estimated value for the
transition dipole moment of neurosporene. A more accurate
description of symmetry breaking, through the “methyl”

TABLE 1 Expressions for tij and Rij featured in Eq. 6

tij 5 22.43 eV1 3.21 eV (r ij 2 1.397Å)
Rij 5 14.397 eV3 [(2 3 14.397 eV/(Rii 1 Rjj ))

2 1 r ij
2/Å2]21/2

Carbon (C) Carbonyl Carbon (CC) Methyl Carbon (CM) Carbonyl Oxygen (OC) Nitrogen (N)

Ik 5 11.16 Ik 5 12.29 Ik 5 9.76 Ik 5 16.02 Ik 5 14.12
Rkk 5 11.13 Rkk 5 11.68 Rkk 5 10.41 Rkk 5 14.49 Rkk 5 12.34

Here r ij is the distance between the nuclear sitesi and j. Also presented are parameters of the PPP Hamiltonian, as defined in Eq. 6, expressed in eV.

TABLE 2 Transition dipole moments (in Debye) of peridinins,
calculated with three parameter sets, “symmetric,” “no
methyl,” and “methyl” (see text)

Carotenoid (State) Symmetric No Methyl Methyl

per611 S1 1.473 1023 0.17 4.70
per612 S1 1.553 1023 0.18 4.70
per613 S1 1.653 1023 0.36 5.08
per614 S1 1.743 1023 0.08 4.56
per611 S2 15.45 15.08 14.00
per612 S2 15.43 14.84 13.84
per613 S2 15.37 15.11 13.50
per614 S2 15.62 15.00 13.50
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parametrization, yields a rather large value of the S1 state
transition dipole moments for peridinin, namely between
4.56 D and 5.08 D (cf. Table 2). Interestingly, a large value
of the S1 state transition dipole moment in PCP, of about 3
D, was also suggested from a recent polarized transient
absorption measurement (Krueger et al., submitted for pub-
lication).

Transition dipole moments of chlorophyll states

The magnitude of the Chl Qy state transition dipole moment
is calculated to be 10.5 D. This value, obtained with the
(S 1 D)-CI method, is closer to the experimentally esti-
mated value of 5.2 D in vacuum (Kleima et al., 2000b) than
our previously reported value of 14.3 D (Damjanovic´ et al.,
1999), obtained with the S-CI method.

The magnitude of the Chl Qx state transition dipole
moment calculated with the (S1 D)-CI method is 2.3 D.
The Chla Qx transition dipole moment in PCP ofA. carterae
has not been measured directly; however, the ratio between
Qx and Qy transition dipole moments in PCP ofSymbio-
dinium kawagutiihas been estimated from the absorption
spectrum (Iglesias-Prieto et al., 1991). Assuming that the
same ratio applies to PCP ofA. carterae,we estimate the Qx
dipole moment to be 3.5 D.

For both Qy and Qx states the calculated transition dipole
moments differ significantly from the experimentally mea-
sured values, indicating that the excited state wavefunctions
have not been approximated well, although we now use a
more extensive basis set than in our earlier calculations
(Damjanovićet al., 1999). This implies that the absolute
carotenoid-Chl transfer times evaluated in the present study
bear a significant error.

Mechanism of excitation transfer

Tables 3 and 5 provide couplings and transfer times for
excitation transfer through the Coulomb and exchange
mechanisms, respectively. As in the case of carotenoid-
bacteriochlorophyll interactions in LH2 of the purple bac-
teria (Scholes et al., 1997; Damjanovic´ et al., 1999), all

exchange couplings are weaker than the respective Cou-
lomb couplings. The strongest exchange coupling arising
between per613 and chl601 is of the order of 1024 eV,
which is one order of magnitude smaller than the corre-
sponding Coulomb coupling. As analyzed in Damjanovic´ et
al. (1999), the method used to evaluate the exchange cou-
pling rather overestimates than underestimates the cou-
plings, due to use of Gaussian-type orbitals. Because even
the strongest (per613-chl601) exchange coupling results in a
transfer time that is two orders of magnitude longer than the
corresponding Coulomb transfer time, we can safely con-
clude that the Coulomb mechanism dominates the peridinin
3 chlorophyll excitation transfer.

S2 excitons

Our calculations suggest very strong couplings between the
S2 states of peridinins within the NH2-terminal cluster. The
respective couplings, presented in Table 4 (“methyl” param-
etrization), lie between 0.0165 eV (133 cm21) and 0.0648
eV (523 cm21). Our findings confirm the experimental
suggestion in Song et al. (1976) of the existence of S2

excitons. Couplings between S1 states of peridinins are
weaker, being only of the order of 1023 eV, thus making
excitonic interactions insignificant.

Spreading of the S2 excitation among the four peridinins
is followed by a rapid relaxation to the S1 state. The prob-
ability of excitation of the S1 state of a particular peridinin
is determined by the density of the S2 exciton on that
peridinin. The latter density depends on the interplay be-
tween coupling strengths, site energies, and structural and
thermal disorder. To estimate the exciton density, we con-
struct an effective Hamiltonian describing the S2 excitons
(couplings are given in units of cm21)

Ĥ 5 1
e1 523 204 236

523 e2 248 133
204 248 e3 303
236 133 303 e4

2. (8)

The basis vectors areu1& 5 uper611* per612 per613 per614&,
u2& 5 uper611 per612* per613 per614&, etc (per611* indi-

TABLE 3 Coulomb couplings (in eV) and transfer times between peridinin and chlorophyll singlet states, evaluated for three
parameter sets “symmetric,” “no methyl,” and “methyl,” as defined in the text

Carotenoid (State)-Chl (state)

Symmetric No Methyl Methyl

UDA tDA UDA tDA UDA tDA

per611 S1-chl601 Qy 2.343 1026 14.4ms 1.173 1023 58.0 ps 21.913 1022 218 fs
per612 S1-chl601 Qy 2.643 1024 1.14 ns 27.863 1024 128 ps 8.793 1023 1.02 ps
per613 S1-chl601 Qy 1.163 1023 58.5 ps 3.583 1023 6.19 ps 1.643 1022 196 fs
per614 S1-chl601 Qy 21.443 1023 38.1 ps 1.123 1023 63.1 ps 2.303 1022 150 fs
per611 S2-chl601 Qx 5.473 1023 7.73 ps 5.193 1023 8.64 ps 4.753 1023 10.3 ps
per612 S2-chl601 Qx 3.453 1023 19.5 ps 23.073 1023 24.7 ps 22.903 1023 27.8 ps
per613 S2-chl601 Qx 3.113 1023 24.1 ps 22.583 1023 34.9 ps 21.613 1023 88.9 ps
per614 S2-chl601 Qx 8.063 1023 3.59 ps 27.023 1023 4.72 ps 26.703 1023 5.20 ps
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cates that per611 is in the excited S2 state). The couplings
between S2 states of peridinins are those presented in Table
4, converted into units of cm21. The S2 exciton densityri on
peridinin i is calculated using Meier et al. (1997)

ri 5 Z21 O
n

ci,n
2 exp~2En/kT!,

(9)
Z 5 O

n

exp~2En/kT!.

Here En are excitonic energies andci,n are coefficients
arising in the expansion of excitonic states, as obtained from
diagonalization of the Hamiltonian (Eq. 8). The excitonic
states are assumed to be populated according to the Boltz-
mann distribution at the temperature of 300 K.

The S2 exciton densitiesri depend sensitively on the site
energiesei. We assume four models for the site energiesei.
In the first model (model A), all site energies are set to
19,800 cm21 (Akimoto et al., 1996). In the second model
(model B) we use different site energies for different peri-
dinins; this difference arises in natural systems due to dif-

ferent protein environments of the four peridinins. Carbon-
era et al. (1999) have assigned the excitation energies
18,400 cm21, 20,600 cm21, 19,300 cm21, and 18,700, to
per611, per612, per613, and per614, respectively, based on
the fit of the PCP absorption spectrum; we therefore use
e1 5 18,400 cm21, e2 5 20,600 cm21, e3 5 19,300 cm21,
and e4 5 18,700. In the third and fourth models, we take
disorder into account by varying the site energies according
to a Gaussian distribution, with maxima assigned as in the
second model, and widths of 200 cm21 (model C, case of a
weak disorder) and 1,000 cm21 (model D, case of a strong
disorder).

The calculated exciton densities for the four models ofei

are shown in Table 6. The exciton densities presented for
models C and D are averages over samples including 1000
random selections. Evidently, the site energiesei strongly
influence the exciton densityri. Per611 has the lowest site
energy and therefore the highest exciton density, while
per612 has the highest site energy and the lowest exciton
density. The effect of static and dynamic disorder is to
reduce the asymmetry among the four peridinins and dis-
tribute the excitation more equally among them. However,
even for a relatively strong disorder of 1000 cm21, the
exciton density on per612 remains low.

TABLE 5 Exchange couplings (in eV) and transfer times
between peridinin and Chl singlet and triplet states. The
couplings were calculated with the “methyl” parametrization
(see text)

Carotenoid-Chl (State) Coupling Transfer Time

per611 S1-chl601 Qy 24.623 1026 3.72ms
per612 S1-chl601 Qy 4.683 1026 3.63ms
per613 S1-chl601 Qy 21.683 1024 2.82 ns
per614 S1-chl601 Qy 1.003 1025 794 ns
per611 S2-chl601 Qx 21.133 1026 182ms
per612 S2-chl601 Qx 1.013 1026 228ms
per613 S2-chl601 Qx 21.513 1024 10.2 ns
per614 S2-chl601 Qx 6.243 1026 6.09ms
per611 T-chl601 T 1.113 1025 851 ns
per612 T-chl601 T 21.123 1025 836 ns
per613 T-chl601 T 5.933 1024 298 ps
per614 T-chl601 T 3.703 1025 76.6 ns

TABLE 4 Coulomb couplings (in eV) and transfer times between different peridinin singlet states, evaluated for three parameter
sets “symmetric,” “no methyl,” and “methyl,” as defined in the text

Carotenoid (state)-
Chl (state)

Symmetric No Methyl Methyl

UDA tDA UDA tDA UDA tDA

per611 S1-per612 S1 21.113 1025 1.08ms 23.453 1025 111 ns 28.433 1023 1.87 ps
per611 S1-per613 S1 1.843 1026 39.0ms 1.013 1026 129ms 23.443 1023 11.2 ps
per611 S1-per614 S1 4.943 1027 544ms 4.623 1026 6.22ms 23.493 1023 10.9 ps
per612 S1-per613 S1 21.253 1026 84.7ms 2.473 1025 218 ns 4.023 1023 8.21 ps
per612 S1-per614 S1 23.363 1026 11.7ms 21.383 1025 680 ns 2.043 1023 32.0 ps
per613 S1-per614 S1 3.303 1026 12.2ms 23.573 1023 10.4 ps 4.933 1023 5.45 ps
per611 S2-per612 S2 7.763 1022 25.2 fs 27.293 1022 28.6 fs 26.483 1022 36.1 fs
per611 S2-per613 S2 3.163 1022 152 fs 23.033 1022 165 fs 22.533 1022 238 fs
per611 S2-per614 S2 3.683 1022 112 fs 23.453 1022 128 fs 22.933 1022 177 fs
per612 S2-per613 S2 3.983 1022 95.8 fs 3.723 1022 110 fs 3.073 1022 161 fs
per612 S2-per614 S2 2.103 1022 339 fs 1.963 1022 396 fs 1.653 1022 551 fs
per613 S2-per614 S2 4.843 1022 65.0 fs 4.653 1022 70.5 fs 3.763 1022 108 fs

TABLE 6 Excitation densities ri, as calculated from Eq. 9,
for the four models (see text) of excitation energies ei. The
electron densities presented for models C and D are
averages over samples including 1000 random selections

Peridinin Model A Model B Model C Model D

per611 0.37 0.86 0.71 0.47
per612 0.36 0.03 0.03 0.04
per613 0.14 0.02 0.03 0.18
per614 0.13 0.19 0.23 0.30
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S2 3 Qx transfer

The calculated coupling energies between the S2 states of
peridinins and the chlorophyll Qx state, presented in Table
3, lie between 1.6 meV and 6.7 meV for the “methyl”
parameter set. The respective times for the S2 3 Qx exci-
tation transfer, determined from Eqs. 2 and 5, range from
5.2 ps (per614) to 88.9 ps (per613), and are also given in
Table 3. The calculated transition dipole moment of the Qx

state is a factor of 1.5 smaller than the measured value,
suggesting that our calculated transfer times are too long.
An additional uncertainty arises through the choice of the S2

emission spectrum ofb-carotene with an emission maxi-
mum at 19,170 cm21. This assumption results in a spectral
overlap of 0.45 eV21. A rather dramatic shift of the emis-
sion maximum to 17,170 cm21 would result in a spectral
overlap of;1.89 eV21, and a reduction of transfer times by
about a factor of four. However, even this dramatic shift in
the spectral overlap would not change the conclusions of
our calculations, i.e., that there is no or very little excitation
transfer via the S2 3 Qx route. The internal conversion
between S2 and S1 states occurs within 190 fs, which is
nearly two orders of magnitude shorter than the shortest
calculated transfer time.

S1 3 Qy transfer

The S1 3 Qy transfer times, calculated with the “methyl”
parameter set and presented in Table 3, range from 150 fs
(per614) to 1.0 ps (per612). These transfer times are all
shorter than the experimentally estimated transfer times of
3.2 ps (Bautista et al., 1999b) and 2.4 ps (Krueger et al.,
submitted for publication). This discrepancy stems from
errors in the calculated UDA value, and from uncertainties in
the spectral overlap integral (e.g., from the Gaussian ap-
proximation for the absorption and emission spectra). The
error in the UDA values might arise from the overestimate of
the Qy transition dipole moment by a factor of two, and
limited accuracy of parameters used to describe carbons
with methyl groups (as discussed above).

Interestingly, the “symmetric” parameter set for per613
and per614 yields transfer times of the order of tens of
picoseconds, as indicated in Table 3. The dipole-dipole term
does not contribute to the transfer due to the forbidden
character of the S1 state in this case. The results reveal that
the higher-order multipole (quadrupole, etc.) interactions
contribute to an energy transfer as fast as 38 ps and 58 ps.

As expected, Table 3 confirms that the S13 Qy transfer
times calculated with the “no methyl” parameter set are
shorter than those calculated with the “symmetric” param-
eter set, but longer than those calculated with the “methyl”
parametrization. The “no methyl” transfer times, ranging
from 6.2 ps (per613) to 128 ps (per612) are competing with
the S1 state lifetime, which is probably of the order of tens
of picoseconds in the polar environment of PCP (Bautista et

al., 1999a). We can, thus, conclude that the symmetry
breaking through the carbonyl group only is not strong
enough to achieve the nearly unit efficiency of energy
transfer observed in PCP; such high efficiency is achieved
through a combination of symmetry breaking through the
carbonyl and through the methyl groups.

Photoprotection by carotenoids

Triplet excitations of chlorophylla in PCP are efficiently
quenched by the four closest peridinins. Table 5 presents
couplings and times for chlorophyll3 peridinin triplet
excitation transfer. Compared to the lifetime of chlorophyll
triplet states of;10 ms, transfer times ranging from;300
ps to 850 ns secure an efficient excitation transfer and,
hence, indicate excellent photoprotection.

CONCLUSIONS

The presented results give a comprehensive description of
the pathways of excitation transfer processes in PCP fol-
lowing initial absorption of a photon. These pathways are
depicted schematically in Fig. 6. Due to excitonic interac-
tions between the S2 states, light absorption results in an
excitation of all four peridinins within one cluster of a
subunit (e.g., per611, per612, per613, per614). This S2

excitation is not shared equally by all four peridinins, but
resides mostly on per611, per613, and per614, and not much
on per612. The reason for the low S2 exciton density on
per612 is the comparatively high site energy of per612.

Direct S23Qx excitation transfer is inefficient compared
to internal conversion of the S2 state into the optically
forbidden S1 state. The calculated electronic couplings and
spectral overlaps suggest transfer rates that are slow com-
pared to internal conversion and, thus, confirm earlier ex-
perimental observations. Because of the low S2 exciton
density on per612, internal conversion occurs only to the S1

states of per611, per613, and per614, as indicated in Fig. 6.
The S1 states of the different peridinins are only weakly
coupled among each other and do not form an exciton state.
After internal conversion, excitation is therefore localized in
the S1 states of per611, per613, or per614. As pointed out in
Desamero et al. (1998) the S1 state has a high spectral
overlap with both Qx and Qy states of Chla, proposing that
both S1 3 Qx and S1 3 Qy transfer pathways can be
utilized. The calculated couplings for S1 3 Qx transfer
range from 5.03 1024 eV to 2.6 3 1023 eV (“methyl”
parametrization) and are, thus, small compared to the cou-
plings for S1 3 Qy transfer (cf. Table 3). We therefore
conclude that S1 3 Qy transfer is the major pathway of
excitation transfer from the S1 state. Inspecting the cou-
plings from all four peridinins reveals that the S1-Qy cou-
pling between per612 and Chl is considerably weaker than
the S1-Qy coupling among the other three peridinins and
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Chl. Interestingly, because of the low participation of
per612 in the S2 exciton state as discussed above, transfer
through the per612 S1 state is avoided, thus enhancing the
overall Car3 Chl transfer efficiency. We are not aware of
any other light-harvesting system in which a similarly in-
tricate interplay between S2 excitation energies and S1-Qy

coupling strengths has been demonstrated.

Comparison of light-harvesting strategies in PCP
and LH2

It is instructive to compare the strategies for excitation transfer
between carotenoids and Chls in PCP of the dinoflagellateA.
carteraewith that in LH2 of purple bacteria (Krueger et al.,
1998b; Damjanovic´ et al., 1999). In both proteins, Coulomb
couplings rather than exchange couplings dominate the carot-
enoid3 Chl singlet excitation transfer, but exchange cou-
plings efficiently quench chlorophyll triplet excitations. The
efficiencies and pathways of singlet excitation transfer, how-
ever, differ between the two proteins.

In LH2 of the purple bacteriumRhodopseudomonas aci-
dophila, the overall transfer efficiency was measured to be
only 38% (Angerhofer et al., 1995). Rhodopin glucoside,
found in LH2 of Rps. acidophila,has the same number of
double bonds as lycopene found in LH2 of the purple
bacteriumRs. molischianum,and one can speculate that
both bacteria exhibit similar, i.e., low, efficiency of carot-
enoid3 BChl excitation transfer. However, carotenoid3
Chl excitation transfer in PCP is highly efficient, with an
overall efficiency of 88% (Bautista et al., 1999b) to 100%
(Song et al., 1976).

The carotenoids found in LH2 ofRs. molischianumand
Rps. acidophila,lycopene and rhodopin, glucoside mainly
use the S2 state to transfer excitation to BChls (Krueger et
al., 1998b; Damjanovic´ et al., 1999). This route is inherently
inefficient because excitation transfer competes with ex-
tremely fast internal conversion. Due to the high symmetry
of the chromophores, which results in weak couplings be-
tween S1 and Qy states (Ritz et al., accepted for publication),
efficiency of S13 Qy transfer is also low.

Peridinin in PCP ofA. carteraeovercomes this problem
by not relying on S23 Qx transfer. It opts instead on using
the S1 state, which lives longer than the S2 state and fur-
nishes, thus, a more likely pathway for efficient excitation
transfer, provided that the couplings between the S1 and Qy

states are strong. The strong couplings between S1 and Qy

states in peridinin are achieved through symmetry breaking
by carbonyl and methyl groups of peridinin. To achieve the
high efficiency of energy transfer and light-harvesting, na-
ture has chosen a highly asymmetric carotenoid to be the
main light-absorber in PCP.

Evolution of photosynthetic life forms has resulted in
rather divergent strategies for light harvesting, as reviewed,
for example, in Hu et al. (1998), even though carotenoids
and chlorophylls are mainly used as chromophores. This
divergence provides ample opportunities to learn from na-
ture through comparison of physical principles it exploits in
the first step of photosynthesis, light-harvesting. As more
light-harvesting proteins become structurally resolved, a
prerequisite for any physical analysis, we will gain an
improved understanding of one of the most critical aspects
of life on earth: harnessing the energy of the sun.
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