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Abstract. A model neural network with stochastic
elements in its millisecond dynamics is investigated.
The network consists of neuronal units which are
modelled in close analogy to physiological neurons.
Dynamical variables of the network are the cellular
potentials, axonic currents and synaptic efficacies. The
dynamics of the synapses obeys a modified Hebbian
rule and, as proposed by v. d. Malsburg (1981, 1985),
develop on a time scale of a tenth of a second. In a
previous publication (Buhmann and Schulten 1986) we
have confirmed that the resulting noiseless auto-
associative network is capable of the well-known
computational tasks of formal associative networks
(Cooper 1973; Kohonen et al. 1984, 1981; Hopfield
1982). In the present paper we demonstrate that
random fluctuations of the membrane potential im-
prove the performance of the network. In comparison
to a detcrministic network a noisy neural nctwork can
Jearn at lower input frequencies and with lower
average neural firing rates. The electrical activity of a
noisy network is very rcminiscent of that observed by
physiological rccordings. We demonstrate further-
more that associative storagc reduces the effective
dimension of the phase space in which the electrical
activity of the network develops.

1 Introduction

One of the traditional themes of scientific investi-
gations which reemerges today with new vigour con-
cerns the molecular, structural and functional self-
organization of neural networks in the brain. The
question posed is how the molecular and structural
properties of single ncrve cells give rise to the self-
organization and intelligent function of large neural

assemblies. The issue of selforganization, which, of
course, is central to many phenomena of the material
and biological world, has been given systematic atten-
tion in recent years through the work of Prigogine,
Eigen, Haken and others (for Refs. see Ebeling and
Feistl 1982). The problem to bridge the vast hierarchy
of structures and processes between the electrically
active neural membrane and higher brain function will
probably occupy scientists for many years-to come.
This problem is approached today from both of its
extremes. Physiological scientists are studying-those
propertics of nerve cells, e.g., the plasticity of synapses
(Kandel and Schwartz 1982; Changeux et al. 1984;
Kelso et al. 1986), which arc assumed to beimost
essential for the selforganization and function’ of
ncural assemblies. Neurochemists are making much
progress identifying the molecular messengers which
the central nervous system employs to organize its
function on thc lowest inter-cellular level (Goelet et al.
1986). At the same time theoretical scientists: have
approached thc problem. of brain function ‘on the
macroscopic level of very many interconnected
neurons. Exploiting the concepts developed for non-
linear selforganizing dynamical systems and analogies
between neural and statistical mechanical systems the
theoretical studies have shown that functions of a
surprising complexity, which one may well call intelli-
gent, can be realized by model neural systems with
rather simple propertics of its individual components
(Hopfield 1982; Rumelhart ct al. 1986). This connec-
tion between macroscopic complexity and micro-
scopic simplicity may provide an answer to the ques-
tion raised above about the relationship of single cell
properties and human intelligence.

Most previous theoretical studies on neural as-
semblies have aimed to simplify the neuronal units as
much as possible going to the extreme of identifying
neurons with two state spins. While it is certainly
advantageous to strive for an extreme in abstraction to
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gain understanding, such abstraction may impede an
identification of properties of the model system with
the properties of the physiological system. We have,
therefore, adopted in our work on the theory of neural
networks a description of neuronal units in close
analogy to their physiological counterparts. The cost
of such an approach is, of course, that the resulting
theory does not yield to mathematical methods de-
rived from the physics of spin glasses (Hopfield 1982,
1984; Amit et al. 1985a,b, 1987; Kinzel 1985) but
rather requires numerical simulations by means of
coupled non-linear differential equations. Our first
results were, nevertheless, encouraging although may
be not surprising: we could demonstrate that the
recent suggestions about information processing in
formal neural networks (Hopfield 1982) can also be
realized through models with closer analogies to the
biological system.

Most models of neuronal networks involve two
variables: axonic currents represented by a two state
neuron, and synaptic efficacies, represented by a
continuous interval of values with upper and lower
bounds. We have modified in our previous model the
corresponding dynamics of neural networks in two
respects: (1) axonic currents are represented by con-
tinuous time-dependent functions; (2) cellular poten-
tials are added as a third class of (continuous) variables.
These modifications move the model closer towards
the realm of physiological neurons, but the resulting
model neurons are still much more primitive than their
physiological counterparts. The relationship between
model neural networks and brain tissue touches on the
cardinal question of theoretical neurobiology, namely
what properties of real neurons are essential for the
computational capabilities of the brains. In respect to
this question we have assumed that model neurons
should be endowed with a memory buffer which stores
information about (/) at which time a neuron fired
last, and (2) what signals converged onto a neuron
before firing. However, our model neglects many other
properties of physiological neurons which are likely to
be also essential. The most important properties of this
kind concern the detailed time course of the generation
of postsynaptic potentials from presynaptic signals
and the time course of the propagation of axonic
pulses. '

In our previous model with cellular potentials,
axonic currents and synaptic efficacies as dynamic
variables we demonstrated that such networks en-
dowed with the Hebbian rule (Hebb 1949) for the
plasticity of their synapses are capable of associative
storage, adaptive filtering and other basic intelligent
tasks. The cellular potentials and axonic currents of
our model had been monitored during execution of
tasks. The results showed two weaknesses: (/) the

receptor input to our model system had to be very
intense, driving the spike activity of the neurons at a
very high frequency; (2) the neurons engaged in
associative recognition tasks fired in an extremely
synchronous fashion and did not act as disorderly as
recordings typically show. We decided, therefore, that
a realistic model of neural systems should include a
noise source. However, we were concerned about the
possibility that a noisy network looses its information
processing abilities. In this article we will present our
investigation on model neural networks with a noise
source. The surprising and important result is: a noise
source which affects the cellular potentials improves
the performance of neural networks as measured by
association and filtering tasks. We believe, therefore,
that we have identified another microscopic property
basic for the function of the brain, namely noise acting
on the neural.cellular potentials. This conclusion, if
true, has great ramifications for the interpretation of
recordings from cells in the brain. Our conclusion
confirms results by Little and Shaw (1975) .who
detected an enhanced storage capacity when noise
had been added to their model network.

At this stage we cannot identify the kind of noise
which contributes to brain function in the suggested
way. Three possibilities exist: (/) membrane noise
originating from the stochastic closing and opening of
ion channels; (2) the noise which originates from the
release of neurotransmitter (Shaw and Vasudevan
1974), e.g. acetylcholine; (3) the noise connected with
afferent synaptic signals. Since the first two sources of
noise can be altered by neurochemical agents, the
conclusion reached in this paper may shed new light on
the relationship between brain function and brain
chemistry.

Our previous theory of neural networks (Buhmann
and Schulten 1986) described a set of interconnected
neurons, the membrane potentials of which evolve
according to deterministic rules. The dynamics which
were assumed for the potential of a certain nerve cell
involves the relaxation to the resting state as well as the
interaction of that neuron with all those neurons which
have formed efferent synapses. The assumed time scale
of the dynamics of membrane potentials measures
about a millisecond. The connections to sensory
organs or other neural networks were taken into
account by a primary set of receptors which provide
input to the neurons. The receptor-neuron connections
constituted a local projection of the activity pattern
presented by the receptors and had been realized either
by a one-to-one projection or by a center-surround
connectivity. A second most important aspect of the
theory involved a dynamic plasticity of the synapses
which endows the network with its abilities for adap-
tive filtering and associative memory. The synaptic



strengths change according to thc Hebbian-like syn-
chronicity rule, i.e. the synaptic strengths increase if the
pre- and postsynaptic cells fire a spike synchronously
and decrcase if there exists no synchronicity between
pre- and postsynaptic spikes. The postulated syn-
chronicity rule deviates from the traditional interpret-
ation of Hebb’s rule which requires conjunction of
integrated activities and not coincidence of single
spikes for synaptic plasticity. For the sake of numerical
convenience we allowed, in violation of Dale’s law,
efferent and afferent synapses of a single neuron to be
excitatory as well as inhibitory; however, we did not
allow a change of synaptic type. In such network the
synaptic connectivity is random initially and contains
no information. The network undergoing the de-
scribed dynamics possesses the ability to learn and
associatively stores patterns frequently presented by
the receptors. The network can suppress background-
noise added to the patterns and can select and store the
prototype pattern if the patterns are subject to vari-
ations between presentations.

As argued above we generalize here the dctermin-
istic model and add a noise source to the dynamics of
the membrane potential. The fluctuations of the mem-
brane potentials inducc spontancous spikc activity.
This spontaneous activity requires some alteration of
the Hebbian synchronicity rule assumed in our previ-
ous description of noise-less ncural networks (Buh-
mann and Schulten 1986). The accidental synchronic-
ity of two spontancous spikes in two ncurons should
not strengthen the corresponding synapse. In the same
vain, a spontancous spikc should not wcaken a
synapse if the postsynaptic cell does not fire acciden-
tally at the same moment. To avoid the destruction of
the synaptic connectivity by spontancous activity we
supplement the Hebbian rule by the condition that
synapses are only modified in case the mean spike rate
of a neuron ¥, considerably exceeds the spontaneous
rate v, -

The noisc acts in our model on the cellular
potential and only indirectly on the spike activity. We
will demonstrate in this publication that such noise
facilitates neural firing in response to weak receptor
input. In the deterministic model weak inputs cause
only changes of the membrane potential in the sub-
threshold range, fail to stimulate firing of neurons
and, thercfore, do not alter synaptic connectivity. The
observed performance of our model system presented
below will demonstrate that the noisc regulates the
level of attention, perhaps comparable to the level of
arousal in animals, and is an essential feature of the
information processing abilities of the ncural network
and not a mere source of disturbance better suppressed.
Our rcsults below also show that the stochasticity in
the dynamics of thc membranc potential prevents the
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unnatural behaviour in the spike activity of the
deterministic model mentioned above, namely a phase-
locking of spikes of different neurons and an excessive
spikc activity. Furthermore, we will demonstrate that
the inclusion of noise reproduces closely the noisy
appearence of the observed electrical activity of neural
units (Abeles 1982).

The inclusion of fluctuations of the membrane
potential in the theory of neural networks allows also
to simulate the nonspecific influence of large neural
nets on a small neural assembly, the latter being
described in detail by membrane potentials and time-
dependent synaptic strengths, the former being ac-
counted for by background noise.

In Sect. 2 of this paper we introduce the equations
which describe the time evolution of the membrane
potentials U{t) under the influence of noise. The
resulting behaviour of a single neuron is considered for
a case without receptor input in Sect. 3 and for a case
with receptor input in Sect. 4. In Sect. 5 we introduce
the dynamics which governs synaptic plasticity. In the
last part of this paper we analyse by means of the
correlation integral method of Grassberger and Pro-
caccia (1983) the effective dimension of the phase-space
in which the dynamics of the membrane potentials U,
evolves.

2 Dynamics of the Membranc Potential

In our model the membrane potentials represent the
fastest dynamical variables and evolve on a time scale
of a few milliseconds. Their dynamics involves relax-
ation to the resting value as well as increase and
decrease due to synaptic intcractions between neurons.
We define as the resting potential Uy=0mV and
assume a relaxation time Ty = 2.5 ms. The postsynaptic
dendritic membrane sums up postsynaptic potentials
induced by presynaptic spikes and correspondingly
alters the cellular potential. Each presynaptic action
potential of neuron k during an interval Ty=1ms
contributes a postsynaptic potential change of neuron i
which is determined by the synaptic strength Sy (¢t). The
time decay of the influence of a presynaptic spike is
approximated by '

G4t /t)=exp <—— A%"—) (1

At,=t—t) measures the time that has passed since the
last spike of neuron k at ¢}, 7 is a time constant defined
further below. This description reproduces satisfac-
torily the synaptic interaction between neurons (Buh-

‘mann and Schulten 1986).

The kinetic equations for the membrane potentials,
which also include stochastic fluctuations, constitute a
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system of non-linear coupled Langevin equations

4 _ U st (wotagns

The first term approximates the relaxation of the
membrane potential U(t). The second term describes
the communication of the postsynaptic cell i with the
connected neurons and receptors and adds Gaussian
white noise with the strength n/|/ T/2. The strength of
the noise yields a distribution of thc membrane
potential U () with variance 5 (=10 mV). The mean
value U, of the distribution vanishes if the neuron
receives no other afferent inputs. £(¢) is a Gaussian
normal-distributed variable with the properties

L@B>=0, <LLOEE+1))>=4(). )

Afferent contributions to the potential are accounted
for by A,(t) which describes the neural and receptor
excitation of neuron i. The activity of the presynaptic
neurons k and receptors j are weighted by the synaptic
strengths S,(¢) and R;;, respectively:

Ag(t)-_- %: SuGildt/ Ty)+ ; R;;G}4t}/Ty). 4

The function o [ A,(t)] restricts potential changes to the
saturation value (wTy) ™"

Aft), if j4tS(eTy) ™"
o[A{)] =1 (@Ty)™", it A4(H)>Ty)™; )
—(Ty)™', if A)<—(0Ty)™t.

As in the deterministic model (Buhmann and Schulten
1986) total and relative refractory periods are taken
into account by a function g[4t;]

e[Ar,J=@(m.-—TF,.)(1 _g, ("—‘T‘—T—)) ©)

The step function ©(d4t;— Tr,) suppresses the sensitiv-
ity of neuron i to afferent excitation during the total
refractory period T}, = 5 ms. During the relative refrac-
tory period of T =2.5ms the neuron gradually re-
gains its sensitivity to incoming cxcitation or
inhibition.

The continuous time evolution is interrupted
whenever the potential reaches the threshold
U,;=30mV. Instantaneously, the membrane potential
is set to a value normal-distributed around the refrac-
tory potential U= —15mV. In addition the neuron
fires a spike. To account for the latter the time ¢? is
updated and the memory function G,(4t,/t) is set to
the value 1 [see (1)]. The overall behaviour is described
formally

0=t
U)=Urp+£(0), (7)
Gldt/t)=1,

if U()=U, then

where £(t) [see (2) and (3)] induces a distribution of the
refractory potential.

A most important parameter of the network dy-
namics is the coupling strength w in (2) which describes
the effect of axonic currents on the membrane poten-
tials U;. In Buhmann and Schulten (1986) the coupling
constant had been expressed in terms of all other
neural parameters such that the resulting neural
dynamics neither becomes completely quiescent nor
like epileptic hyperactivity. In the present investigation
suitable values of w depend also on the noise level. This
issue will be discussed further below.

3 Behaviour of a Single Neuron

Before we investigate the behaviour of many interact-
ing neurons in a network we consider the membrane
potential of a single neuron excited solely by Gaussian
white noise (Goel and Richter-Dyn 1974; Holden
1976; Sampath and Srinivasan 1977). This situation is
described by the Langevin equation

dU; __U n

i.e. (2) with the afferent excitation A,(¢) omitted.

If the neuron rests in the sensitive state and the
potential dynamics is not affected by the factor o[ 41,1,
ie. ofdt]=1, (8) corresponds to an Ornstein-
Uhlenbeck process with absorbing boundary con-
ditions. The corresponding Fokker-Planck equation
for the time-dependent distribution p(U,, t) of U, values
is given by

3 g o (0 U
EP(U"t)—ﬁTIL(_a—E+F>'pw"’t)' &)

Equation (9) with absorbing boundary condition
p(Ur, t)=0is solved by parabolic cylindrical or Weber
functions (Goel and Richter-Dyn 1974). Without the
boundary condition the equilibrium distribution is
given by a-Gaussian distribution

2
po(U)= _21/1;71?“" (— %—) (10)

The equilibrium distribution of the membrane poten-
tial which evolves according to (6)~(8) must be deter-
mined numerically. In Fig. 1 we compare the resulting
distribution with the Gaussian distribution (10). Fi-
gure 1 shows that in case of a low spontaneous spike
rate v (v,=4s""') the exact distribution deviates only
little from the Gaussian distribution (10).

The spontaneous spike rate of a neuron can then be
determined from the inverse mean first passage time
7epy for the Ornstein-Uhlenbeck process (9) to reach
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Fig. 1. The cquilibrium distribution of a membrane potential
evaluated according to (8) is compared to a Gaussian distribution
with variance n=10mV. The differences between the two
distributions, i.c. thc peak at U;= —3mV and the small shift to
negative potentials, are due to the deterministic dynamics during
the refractory period and duc to the discontinuous cvolution
when the potential reaches the threshold
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Fig. 2. Dependence of the spontancous spike rate v, of a neuron
on the variance of thc membrane fluctuations. The spike rate v,
has been cvaluated according to (11) and (12)

the threshold. The resuit is
1

= 11
vs ‘Cpp-r'f‘ T}"¢+2TF,. ( )
with (see Schulten et al. 1981)

Ur ’12 U
Tepr= | [? Po(U)dU] § po(X)dX. (12)
Uo R )

Figure 2 shows the dependence of the spontaneous
spike rate v, on the noise amplitude. An increase of the
noise amplitude increases the spontaneous spike rate.
If the noise is too weak (7 <7 mV) a neuron does not
reach the threshold and the spontaneous spike rate
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Fig. 3. Time-dependent distribution of the cellular potentials
after a single rcceptor input at ¢=0 are shown 1 ms after input
spike. During the following 3ms a second maximum of the
distribution grows at the refractory potential U and relaxes to
the resting potential U;. After 10ms the distribution of the
cellular potential approaches again the equilibrium. For the
receptor-neuron coupling wR;; a value of 30mV/ms has been
assumed

vanishes. In the subsequent simulations # assumes a
value 10mV which corresponds to a spontaneous

1 . ~ -1
firing rate v,~4s™ "

4 Rcaction of a Single Neuron
to a Non-Stochastic Receptor Input

We will now investigate the influence of a receptor
input on a single noisy neuron. The receptor fires a
spikc at t=0 and is then quiescent. This process is
described by the Langevin equation

du, U t n

(13)

At t <0, before the receptor fires, the potential assumes
the equilibrium distribution in Fig. 1. After the re-
ceptor spike, the potential distribution shifts towards
the threshold potential. The firing of neuron i becomes
then more probable and as a result a second maximum
of p(U,, t) develops around the refractory value U. The
new peak shifts to the resting potential within the
refractory period Ty +2T,. This behaviour is-ill-
ustrated in Fig. 3. :
The probability v(¢) that the neuron fires at time ¢
after a receptor spike is presented in Fig. 4. v(t) rises
from its equilibrium value v, and within 5 ms relaxes
again towards this value. The time dependence of v(t)
depends on the strength of the receptor-ncuron con-
nection wR;;. Weak coupling between receptors and
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Fig. 4. Time dependence of the firing probability after a receptor
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Fig. 5. Dependence on the coupling strength of the total proba-
bility of a neuron to fire within 5ms after it received a receptor
spike

neurons yields only a small instantaneous increase of
w(t). In case of strong coupling the receptors definitely
fire within the time period Ty and, hence, v(t) exhibits
a strong instantaneous increase.

If one neglects the spontaneous spike rate the total
probability of a neuron to fire after a receptor spike is

5ms

{ v(t)dt. The dependence of this probability on the
0

coupling constant wR;; is presented in Fig. 5 for four
different noise levels.

In case of weak coupling (wR;;<20 mV/ms) the
probability for firing after a receptor spike is small. In
case of strong coupling (wR;;>60mV/ms) firing is
certain. The noise level regulates the gain of the firing
probability. Strong noise (n=15 mV) yields a gradual
increase of the total firing probability with increasing
coupling constant. In the deterministic limit of vanish-

ing noise (n=0mV) the response of a neuron to an
afferent spike is that of a threshold automaton, i.e. the
firing probability rises  discontinuously  at
wR;;=47mV/ms. This behaviour demonstrates that
the noise amplitude n plays the same role as tempera-
ture in stochastic spin-like models, e.g. in the Boltz-
mann machine (Hinton et al. 1984),

5 Synaptic Plasticity in Stochastic Neural Networks

It has been suggested by many authors (see for example
Kohonen 1984 and references therein; Grossberg 1972)
that neural networks which store information non-
locally in synaptic connections are capable of associa-
tive memory. For the purpose of such information
storage we introduce plasticity of the synapses. The
synaptic changes in our model evolve on a time scale of
0.1--0.3 s. The changes depend on the synchronicity or
asynchronicity of the pre- and postsynaptic spikes
according to the Hebbian rule. Experimentally, there
exist only vague and indirect indications of fast varying
synapses derived from the analysis of EEG oscillations
(Freeman 1977). Recently, Kelso et al. (1986) have
observed, albeit on a longer time scale, synaptic
efficacies altered by synchronous pre- and postsynap-
tic activity.

In addition to the Hebbian rule we postulate that
synaptic changes occur only when the mean spike
frequency considerably exceeds the spontaneous spike
rate. If both neurons satisfy this condition their
synapse can be strengthened in case of synchronous
firing. If only the presynaptic neuron fires with a high
enough spike rate the synapse S;(t) is weakened after
each presynaptic spike. The mean spike rate is given by
the expression

| —
C()= 7 5, 0=t exp(— ‘—T—G‘-> (14)

The time constant T; assumes values between 50 ms
and 200 ms. For a periodic spike train which is limited
by the refractory period and, therefore, has a minimum
spike interval Tp=T, + 2T the maximum value of
G{(nT,) in the limit Tp< Ty is (Tp) ™.

In our model the strength S,(¢) of the synapse
connecting neuron k to neuron i is governed by the

equation
_ Sit) = Si(0) +Q." (ﬁ) (G, G,),

ds Ts T

_d;"s = , if S,2|S42S;; (15a)
_ Sult) = Sy(0) . else.

Ts



k(G;, G,) and @, are defined as follows
x(G;, Gy)

1, if G>G>e 'AG>v,AG,>v,;
={—1, if G>e '>GAG<v,AG,>V,;

0, eclse (15b)
14k 1—k
Q > + Qua >
Q.= if $;,€[0.9S,,5.]JvSe[—0.1S,—S7;
Q, clse. (15¢)

Equation (15a) holds both for excitatory and in-
hibitory synapses and conserves the sign of the synap-
tic strength S, (t). The first term describes the relax-
ation of the synaptic efficacies towards their initial
values and accounts for a gradual loss of stored
information (Ty~ 2 s). The second term describes how
pre- and postsynaptic activities change the synaptic
strength. The effect of this term decays exponentially
in time after each presynaptic pulse as described by

G, (ﬁ;&) The short decay time Ty,=2.5 ms implies
M
that the synaptic efficacy is affected only by a synch-

ronous presynaptic pulse. The function w(G,G,)
-switches between excitatory growth, inhibitory de-
crease and passive relaxation of the synapses. If the
mean ratc of postsynaptic spikcs G(t) cxceeds the
threshold v,~40°~", i.e. a ratc much larger than the
rate of spontaneous activity v, and if the presynaptic
neuron fires before the postsynaptic neuron, then the
synapse S;(t) is strengthened. Conversely, the synap-
tic strength decrease if the presynaptic neuron k has
fired but the mean postsynaptic activity G(t) is below
v;=1s7! ie. below a rate much smaller than the
mean firing rate v, In all other cases the synaptic
strength is not affected by the second term in (15a).

Q. defined as in (Buhmann and Schulten 1986)
models a hysteresis behaviour which guarantees that a
newly learned-pattern does not destroy the patterns
already stored in a network. This factor in (15a) slows
down changes of those synaptic efficacies. S;,(f) which
have reached the upper saturation values §, and —§,
for excitatory and inhibitory synapses, respectively.
The parameter o appearing in the definition (15¢) of 2,
assumes a value below 0.1 (0<a<0.1).

6 Noise-Induced Synaptic Plasticity

A simple microcircuit involving a single receptor and
two neurons can demonstrate the mechanism of synap-
tic changes which are induced by noise of the mem-
brane potential. This microcircuit is presented in

319
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Sgy(t)

Neuron 1 Neuron 2

Six(t)
Fig. 6. Microcircuit of one receptor and two ncurons to test the
dependence of the synaptic dynamics on the noise level. The
strength of the receptor-neuron coupling wR has been kept
constant during the simulations. The neuron-neuron connec-
tions S, and S, change according to the dynamics described in
Sect. § '

AR

0.4 -
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AL
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Fig. 7. The dcviation of the average synaptic strength from the
initial valucs, i.c. thc quantity (S,(1s)+S,,(1s))/2—S(0)), is
shown as a function of the noisc level 5. Strong coupling (wR
=40 mV/ms) lcads to a saturation of the synaptic strength if the
noisc level cxceeds 4mV (0). For a coupling constant wR
=35mV/ms (a) the nccessary noise level for saturating synaptic
growth increases to n=6mV. A coupling of wR=30mV/ms (0)
yiclds no saturation of the synaptic growth within onc sccond.
The synapscs which arc not saturated at the upper boundary §,
cxpericnce strong fluctuations as the crror bars show

Sa15)-52(0) (ik) €f(1.2).(2.1)}

Fig. 6. The frequency of the receptor spikes lies in the
interval [50s~!, 80s~!]. Initially, the neurons are
coupled only weakly by two synapses with strengths
S,, and §,,. These synapses evolve according to the
dynamics discussed in Sect. 5. Since the two neurons
receive input from the same receptor unit their afferent
activities are completely synchronous and the Hebbian
rule should induce a strong excitatory synaptic interac-
tion. In fact, both §,, and §,, starting from positive
values S(0) increase in time. However, the evolution of
these synaptic efficacies depend on the strengths of the
neuron-receptor coupling wR as well as on the noise
amplitude . This dependence is illustrated in Fig. 7.
This figure shows that an increasc of  is accompanied
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by an increase of the mean synaptic strength
(S,,+8,,)/2 reached after 1s of activity. A coupling
wR =40 mV/ms between receptor and neuron yields
saturated synapses between the two neurons if the
noise amplitude n exceeds 4mV. In the limit of
deterministic dynamics (y=0mV) the two neurons

never reach the threshold potential and, therefore, .

cannot strengthen their synaptic connections. Obvi-
ously, the two neurons detect the synchronous excit-
ation presented by the receptor only if noise provides a
sufficiently high level of attention. In the case of
weaker coupling, ie. @wR=35mV/ms and wR
=30 mV/ms synaptic growth can still be induced by
noise, however, it becomes much more unreliable as
demonstrated by the large error bars in Fig. 7.

Table 1. Network Parameters

Constants of the fast dynamics

Ty=1.0ms time constant of a neural spike
Tr=2.5ms relaxation time of membrane potential
Te,=50ms absolute refractory period
Tr,=25ms relative refractory period
T;=20.0 ms time between two presentations of pattern
R/S z]/lv coupling ratio between receptors
and neural network
Ur=30mV threshold potential
Ug=0mV resting potential
Up=-—15mV relractory potential
n=10mV noise level
vy=45""! spontaneous spike rate

wR;;=45mV/ms coupling constant

Constants of the slow dynamics

Tu=2.5ms coincidence interval of two spikes
Ts=20s synaptic relaxation
Te~02s time scale for averaging spike {requency

Q=1/(300 ms) time scale of synaptic changes

a=~0.1 hysteresis factor

S, =178 maximal synaptic value

$,=0.01S minimal synaptic value

N=150 number of synapses per neuron
S=60 synaptic strength (arbitrary units)
v,~40s7! minimal spike rate for excitatory synaptic
‘ growth

wr1s™! maximal spike rate for inhibitory decrease

of synapses

7 Behaviour of a Network with Receptor Input

In this section we will demonstrate that a neural
network with stochastic fluctuations of its cellular
potentials shows associative properties which are
superior to those of a network without noise. The
ability for associative storage originates from the

ability of a network to change its connectivity struc-
ture. For a demonstration we start a network with a
homogeneous, i.¢. information free, connectivity struc-
ture with an equal number of excitatory and inhibitory
synapses. Such network stores a pattern presented by
the receptors and associatively reconstructs the
original pattern even if only an incomplete or dis-
turbed pattern is presented. This ability is demon-
strated below through a series of computer simu-
lations. Further functions of the deterministic model
network (Buhmann and Schulten 1986) like the ab-
straction of a prototype pattern from a series of
patterns or the learning of more than a single pattern
have been confirmed for the stochastic network as well
(Buhmann 1987), but will not be demonstrated.

The computer simulations followed exactly our
previous procedure for networks without noise (Buh-
mann and Schulten 1986). The simulations involve
three different stages. During a first stage the neural
network has to learn the pattern brain presented
through the receptors with a frequency of 50s™*. This
frequency is actually 20 times smaller than that
employed in (Buhmann and Schulten 1986) for a
noiseless network. The first (learning) stage lasts
between 0.3 and 1.0s. Depending on the difficulties
assumed during the learning task, i.e. if strong noise
disturbes the synchronicity of the presented pattern,
the network needs to learn for a longer time than, say,
in the case of a receptor pattern free of background
noise.

During the second stage the receptors are inactive
and the electrical activity of the network relaxes to the
resting level. The neurons {ire only spontaneous spikes.
The second stage is introduced to separate the learning
stage from the following test period. This interval of
quiescence suppresses possible memory effects in the
activity of the network. Therefore, any associative
abilities acquired by the network can only be based on
changed synaptic connectivity.

During the third stage, the test stage, the network
has to process incomplete or disturbed patterns and
compare them with the information in storage. For
example, the receptors present the test pattern bran
which differs from the originally learned pattern by the
missing letter i. The patterns presented during the
learning stage and the test stage are shown in Fig. 8.

7.1 Learning and Association of a Pattern

The first simulation should confirm the associative
properties which have been demonstrated already for
the deterministic network, i.e. the association of a test
pattern to a pattern previously learned. During the
training session of the network all receptors represent-
ing brain, the pattern to be learned, fire synchronously



Fig. 8. Lcarning pattern and test pattern employed in our
simulations. The mark O indicates that the receptor at that
position fires with a rate T;™*, i.e. the function G}(4¢§/ T, ) is sct to
1 at this rate, and cvolves according to (1) between these timcs

with a frequency of v;=50s"!. The coupling constant
w is set to 45 mV/ms which effects the firing of about
70% of excited neurons. A homogeneous background
noise with a spike rate of 10s~! is superimposed.

First we will analyse the behaviour of the network
during the learning stage. Initially the synaptic
strengths are selected’ randomly with the constraint
that the sum of the afferent synaptic strengths Z,S;,
vanishes. This implies that the local distribution of
excitatory synapses is equal to the local distribution of
inhibitory synapses.

During the learning stage, the synaptic strengths
change drastically. The dynamics of the synapses
reacts to coincidences of pre- and postsynaptic spikes if
both neurons firc with a spike rate above v, The
excitatory synapses grow up to the excitatory satu-
ration value §,, and the inhibitory synapses decay to
the saturation strength —S,. At the end of the learning
stage after 1s, most of the neurons representing the
dark pixels in the word brain have synchronized their
firing behaviour by lateral cxcitatory interaction.

The network rcaction to a receptor input at the end
of the learning stage at 1 s is shown in Fig. 9. Only seven
figure neurons have not reached the threshold within
2 ms after the presentation of the figure brain. Due to
the learned excitatory connectivity between neurons
representing the word brain the assembly reacts more
synchronously and the fault rate - the number of
pattern neurons which fail to fire — decays below 3%.

Figure 10 shows the membrane potential of neuron
(15, 8) at the end of the learning stage. During the last
250 ms of the network training the time period between
two spikes fluctuates slightly around 20 ms, the period
of the receptor input. Figure 10 demonstrates also that
the electrical activity of the model neurons resembles in
its noisy appearcnce neurophysiological recordings
from nerve cells in brains.
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Fig. 9. The activity function G{4t,/T,,) is shown for a trained
network. At the end of the learning stage nearly all cxcited
neurons have synchronized their firing behaviour and reach the
threshold (Pattern brain presented at 980 ms)
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Fig. 10. The membranc potential U (t) of neuron (15, 8), a neuron
of the letter r, is shown during the last quarter of the learning
stage. The synchronization cffected by pattern learning is con-
firmed by the regular and periodic spike train of a single neuron.
The firing is shown by the spikes of 100 mV, which are included in
this diagram whencver the membrane potential reaches the
threshold

The success of the learning session is documented
in Fig. 11. The incomplete test pattern bra n, shown in
Fig. 8, is associatively restored when presented to the
network. The neurons representing the missing letter i
react with a delay-time of 1-3 ms. All members of the
group of figure neurons for the letter i fire nearly
synchronously with the other members. :
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Fig. 11. Network activity during the association task described in
Sect. 7.1 (Pattern bra n presented at 1020 ms)

7.2 Changes in the Synaptic Connectivity

The synchronization of the neural activity shown in the
Figs. 9 and 10 and the associative abilities demon-
strated by Fig. 11 can be understood if we investigate
the synaptic structure established after the learning
session. Figure 12a and b shows the afferent and efferent
synapses of the reference neuron (37,4) representing
the dot of the letter i. The size of the squares and the
diamonds encodes the growth of the excitatory and the
inhibitory synapses, respectively. The size of the sym-
bols scales proportionally to the difference
Si(t)— S;(0) between the actual synaptic strength and
the strength of the initial synapse. All the neurons
representing the figure brain have developed ex-
citatory or inhibitory synapses to the reference neuron,
both saturating at the values S, or —S,, respectively.
During an association task the excitatory synapses
support the firing of the reference cell, whereas the
inhibitory synapses do not prevent the reference cell
from firing. Afferent synapses of the reference cell
coming from background neurons, apart from small
fluctuations, rest at the initial synaptic strength. The
reason for this behaviour is that the synaptic growth
term in (15a) is proportional to the presynaptic activity
G,{(4t,/Ty) which vanishes for a background-neuron.

The efferent synapses of the neuron (37,4) have
nearly the same structure as the afferent synapses.
Connections leading to a figure neuron are grown to
the excitatory saturation value. The neurons belonging
to the figure brain are connected by symmetric syn-

Afferent Synapses from Neuron (37.4)
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Fig. 12a and b. The afferent and efferent synapses of the reference
neuron (37, 4). The quantity S;,(t)— S,(0) is presented by the size
of the square and diamond symbols. The diamond ¢ denotes
inhibitory synapses, the square 0 denotes excitatory synapses.
The connections to background neurons are found to experience
small fluctuations around the initial value. The boldface symbols
indicate synapses which have reached the upper saturation
boundaries —S; and S,

apses because there exists no rigid time order for firing,
A difference between afferent and efferent synapses
exists for the figure-background connections. The
synapses which start from the reference cell and lead to
a background cell have decayed to the lower saturation
boundaries S; and — S, for excitatory and inhibitory
synapses. This change of the synaptic structure effects a
suppression of background activity, even in the case
that the network has learned more than a single
pattern.

The influence of strong disturbing noise on the
learning process has been confirmed by various com-
puter simulations. The efferent and afferent synapses
have only partially reached their excitatory saturation
values. In contrast to the synaptic structure of the
figure neuron (37, 4) shown in Fig. 12 some efferent and
afferent synapses of a disturbed cell are still developing
at the end of the learning stage due to lack in
coincidences between pre- and postsynaptic activity.
Neurons with such rudimentary synaptic structure
cannot be excited during an association task and,
hence, give rise to faults in the associated pattern.

7.3 Learning of a Sparsely Presented Pattern

Inthe simulations discussed in the previous sections the
receptors always present the whole pattern synchron-
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Fig. 13. Activity function of a network during the lcarning stage
when at every presentation only 50% of the pattern receptors arc
cxcited

ously. This is a sufficient but not a necessary condition
for learning. Building of neural assemblies only re-
quires that the synaptic changes duc to synchronous
spike events prevail over the decrease of the synaptic
strength caused by relaxation or asynchronicity. In the
following simulation only 50% of the receptors be-
longing to the pattern presented by the receptors fire at
the times the pattern is presented to the network. At
- these instances the network sees only half of the pattern
pixels and has to reconstruct the complete pattern
from the detected spike coincidences. This is possible
because at different presentations the identity of the
receptors presenting the pattern differs such that after
several presentations the network has had the chance
to detect coincidences between any pairs of pattern
receptors. Due to fluctuations of the membrane poten-
tial which increases the sensitivity of the neurons the

network can indeed store the sparsely presented pat-.

tern. The training session has to be prolonged, though.
The factor by which the learning session has to be
extended is proportional to the inverse square of the
synchronization degree defined as the ratio of syn-
chronously firing receptors to all pattern receptors. For
example, if only half of the brain receptors fire
synchronously the network has to learn four times
longer than in the case of full synchronization of the
receptors.

Figure 13 shows the network activity after presen-
tation of the pattern by the receptors. An clectrophysi-
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Fig. 14a and b. Evolution of the synapses during the learning
stage. The pattern brain is sparsely presented (only 50% at each
presentation). The learning stage had been extended four times
because of the reduced probability for spike coincidences. a
t=1000ms; b t =3668 ms

ological experiment which detects the neural spikes
will see only the activity of those neurons denoted by
the bold-faced circles (O). The figure demonstrates
that, if only the millisecond dynamics is analyzed, it is
very hard to reveal from the latter the whole pattern.

In Fig. 14 we present the evolution of the synapses
afferent to neuron (37,4) [the dot of the letter: i].
During the Icarning stage which lasts 3.7 s the network
has detected the hidden correlations which- exists
among the pattern pixels and has built up a synaptic
structure which contains the information of the whole
pattern brain. Figures 13 and 14 prove that the
synchronization of all the receptors in each presen-
tation is not a necessary condition for learning. For
associative pattern storage the synaptic growth due to
spike coincidences must prevail, however, over the
relaxation of synapses.

8 Structure of the Phase-Space of the Network

Equation (2) approximates the electrophysiological
behaviour of real neurons evolving on the miilisecond
time scale. The total membrane potential of a network

i

EEG(t)=Y. (U,-(t,)—i— 80mV . G; <—%)) (16)
Ty

can also bc given a physiological interpretation, name-
ly that of the EEG-signal (electro-encephalogram-
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signal) of the neural system. The membrane potentials
U{t) below the threshold and the action potentials
contribute to this signal. The action potentials are
described by the functions G(d4t;/Ty) which, for this
purpose, are scaled by the factor 80 mV corresponding
to the peak potential difference developed during
firing. The stochastic behaviour of the EEG-signal
shows a significant dependence on the internal connec-
tivity of the neural system. In the following analysis the
neural network is stimulated by noisy receptors with a
mean spike rate of 40s™'. No systematic pattern is
presented to the network.

We will investigate the EEG-signal of a neural
assembly and the membrane potential of a single
neuron in an assembly for three different synaptic
structures. First we consider a network which has no
synaptic connections. The second network considered
contains neurons connected by synapses which are
weak in comparison to the receptor-neuron connec-
tions (|Ryl/ISx(¢)}>1). The third structure contains
neurons which have connections with nearly the same
strengths as the receptor-neuron connections
(IRul/ISu()l = 1). The synapses in the latter two struc-
tures are completely saturated after a previous learning
stage and separate the network into two sets of
neurons, a figure assembly and a background as-
sembly. The neurons belonging to the background
assembly after the learning process are not interacting
and are inhibited by the assembly of figure neurons.

In this investigation we want to test in how far
learning and the concurrent development of an
ordered synaptic structure reduces the effective dimen-
sion of the phase space in which the electrical activity
of a network takes place. One can imagine that the
dynamics of an unstructured network explores a higher
dimensional space of states than that of a structured
network. In order to be unbiased in an exploration of
this possibility one should drive the system with
stochastic input since any ordered input may impose a
reduction of the dimension of the network dynamics as
well. The main problem for the intended analysis is a
proper procedure to obtain the desired information.
Such procedure has been suggested recently by Grass-
berger and Procaccia (1983) for the analysis of the
effective dimensions of strange attractors in non-linear
dynamical systems.

Following Grassberger and Procaccia (1983) we
build up an n-dimensional embedding space with the
n-dimensional vectors

XO=[f(i4e), ..., fidt +(n—1)1)].

4t is the sampling interval of the signal f(¢) which, in
our case, is either the signal EEG(t) or the potential
U{t). At ranges between 4 and 10 ms (4t=4 in our
simulations). For the time constant © we choose the

value 10 ms. The scaling behaviour of the correlation
integral

N

C(r)=lim Y O@r—X{"-X{") (17
N—o §,j=1

i*j
for small r contains the information about the phase-
space density of the system, e.g. tests whether the
dynamics of the system is dominated by a strange
attractor. In order to obtain this information one tests
whether the correlation integral exhibits a power
dependence for small r

C,(r)~ri™, (18)

Such power dependence is indicative of a strange
attractor. The exponent d(n) called correlation expo-
nent measures the effective dimension of the phase-
space filled by the trajectory f(¢).

In our analysis of EEG(t) we cannot expect to
reveal a strange attractor because the activation of the
network is compietely stochastic and not deterministic
chaotic. Therefore, the correlation integral (17) will not
exhibit a simple power dependence (18) and the
correlation exponent d(n) will increase with increasing
embedding dimension n. Nevertheless, also a non-
constant d(n) should be indicative of the effective
dimension of the network dynamics. In fact, we found
that d(n) depends significantly on the synaptic connect-

. ivity of the neurons. Strongly coupled neurons with

excitatory interactions yield a lower correlation expo-
nent d(n) than weakly coupled or uncoupled neurons.

The correlation integral of a neural potential
produced by a pattern neuron in a strongly coupled
network is shown in Fig. 15. The embedding space has
dimension n=10. The slope of the straight line yields
the correlation exponent. Obviously, the correlation
integral does not obey a power law. The exponent for
small distances r differs from the exponent for inter-
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Fig. 15. The correlation integral C(r) as a function of r. In the
double logarithmic plot the slope of the straight line determines
the correlation exponent d
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mediate r. The two separated ranges can be interpreted
as an ordering phenomenon for greater distances r.
The firing of the assembly-neuron obeys the dynamics
of the assembly and is not dominated by the stochastic
receptor input. The reaction of the whole assembly
reduces the degrees of freedom which are found in a
network without synaptic interaction between the
neurons. For small distances r the fluctuations around
the attracting point X=(0,...,0), an n-dimensional
representation of the resting potential U,, show a
completely stochastic behaviour.

In Fig. 16 the correlation exponent d(n) of the
membrane potential of a figure assembly-neuron, i.e. a
neuron which codes for the figure learned and not for
the background, and the corresponding dimension n of
the embedding phasc-spacc arc shown. It is significant
that the network with strong internal connections
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Fig. 18a and b. Poincar¢ maps of the EEG-signal produced a for
an unconnccted and b for a strongly connected network

produces a less chaotic signal with a smaller correl-
ation exponent than the networks with weak synapses
or without synapses. '

The scaling behaviour of the EEG-signal produced
by the strongly coupled network can also be classified
into a chaotic range of the potential fluctuations and
into a partially chaotic range of the network activity.
This is demonstrated in Fig. 17. The reduction in
dimension of the EEG-signal produced by the weakly
coupled network cannot be significantly detected.

A more concrete idea of the embedding space is
given by the Poincaré maps of the EEG-signals (Fig.
18a and b). A Poincaré¢ map shows an embedding space
of dimension n=2. With increasing strengths of the
internal neural connections the Poincaré map exhibits
more structure and indicates that the analysed signal is
less chaotic than signals from networks without
synapses.

9 Conclusion

We have presented a model neural network which
mimics physiological ncural systems also with respect
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to stochastic fluctuations of its cell potentials. The
noise does not destroy the network’s ability to learn
and to associatively reconstruct patterns. On the
contrary, noise controls the level of activity and
enables the network to associatively store and adap-
tively filter weak receptor inputs which would other-
wise be neglected. We argue that noise is of functional
importance for the nervous system. Neurons which
experience electrical membrane noise or noise from
synapses respond to afferent action potentials with a
firing probability determined by synaptic strengths
and noise level. The noise level corresponds to temper-
ature in the neural model of Little (1974, 1975), in the
Boltzmann machine (Hinton et al. 1984) and in spin
glas neural network models (Amit et al. 1985, 1987).
Stochasticity in neural dynamics assures that a neural
network explores the necessary variety of network
states. This enables the network to solve complex
optimization problems as they have been described in
vision research (Koch et al. 1986) or should enable
invariant pattern recognition (Bienenstock 1984;
Malsburg and Bienenstock 1985). The latter problem
is the subject of our own current research.

In order for neural networks to explore the advan-
tages of inherent noise the traditional rules for synaptic
plasticity need to be extended. In addition to the
customary Hebbian rule based on synchronicity be-
tween pre- and postsynaptic spikes a second condition
for synaptic changes is introduced to protect the
synaptic structure against destruction by spontaneous
activity. The mean spike rates v of the pre- and
postsynaptic neurons have to be considerably above
the spontaneous spike rate v, for excitatory growth.
For the decrease of the synapses the postsynaptic spike
rate must be below v,.

The analysis of cellular potentials as monitored
through EEG-signals demonstrated that stochasti-
cally excited networks with strong connectivity within
neural assemblies produce a less chaotic EEG-signal
than networks without or with weak internal connec-
tions. Perhaps these results provide a key to the
understanding of strange attractors in EEG dynamics
of sleeping man discovered recently (Babloyantz 1985,
1986; Dvorak and Siska 1986).
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