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On the basis of solutions to two-dimensional diffusion-reaction equations the fluorescence signal for
photobleaching experiments with arbitrary time-dependent and time-independent irradiation profiles is
evaluated. The solutions involve spatial discretization and spectral expansion, spatial and temporal
discretization employing the Crank-Nicholson integration scheme, generalized moment expansion, and
an approximation yielding an analytical expression. The algorithms developed can be installed on small

computers to determine lateral diffusion coefficients from observed fluorescence signals. The theory
developed is applied to photobleaching with constant irradiation profiles and the resulting diffusion
coefficients, in the range 0.001 to 10.0 zm? s~ for the systems investigated, are compared to the results of
conventional photobleaching experiments. Applications of the theory compare further the signals
resulting from Gaussian and rectangular irradiation profiles, the influence of the membrane geometry,
i.e., planar or spherical, on the fluorescence signal, and the effect of finite diffusion spaces.

I. INTRODUCTION

Many biochemical reactions of the living cell are con-
trolled by the time which biomolecules, in search of their
target, spend on Brownian motion. This time is determined
largely by the topology of the spaces in which the Brownian
motion of biomolecules is carried out. In order to increase
the respective reaction rate constants diffusion controlled
reaction processes are often confined to spaces of low effec-
tive dimension, e.g., to the plane of two-dimensional mem-
branes or along one-dimensional polymers. For an under-
standing of this regulation of diffusion-controlled processes
it is most important to measure the transport properties of
biological materials, preferably in the living cell. A most im-
portant contribution to this goal has come through the de-

velopment of the photobleaching method, often referred to

as fluorescence microphotolysis (FM) or fluorescence recov-
ery after photobleaching (FRAP).!™*

Observation of the transport properties also reveal in-
formation on the structure of the molecular environment to
which biomolecules investigated are confined. In case of a
membrane environment the membrane lipids form a bilayer
which together with the membrane proteins have been con-
sidered a two-dimensional viscous liquid.® The lateral diffu-
sion of membrane constituents is determined in part through
their geometry and the viscosity of the membrane. However,
connection of the membrane to the cytoplasmic structures
within the cell or the formation of heterogeneous lipid areas
can also contribute to the mobility in cellular membranes.*
Examples of structure-transport relationships have been
found in connection with the phase transition of DMPC
vesicles (see Sec. III A), with the influence of the spectrin—
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actin network in the diffusion of proteins in erythrocytes,
and with the effect of membrane inhomogeneities on lipid
diffusion.®

So far a relationship between biological function and
lateral transport in membranes could be demonstrated only
for a few systems. Examples for membrane processes con-
trolled by lateral diffusion are the reactions of the electron
transport systems in microsomal membranes,’ the hormonal
stimulation of adenylcyclase, and hormone-induced clus-
tering of membrane proteins.®

To apply the photobleaching method the biomolecules
of interest, so far mainly constituents of biological mem- .
branes, are labeled by suitable fluorescent dyes. In order to
investigate the diffusion of lipids one introduces lipid-like
fluorophores, e.g., DiO (see Sec. III A) into the membranes.
If one wishes to monitor the diffusion of membrane proteins
one labels these particles either unspecifically by reaction
with a fluorescent reagent like FITC (see Sec. IIT A) or spe-
cifically by introduction of fluorescent antibodies, toxins or
hormones. The dyes employed need to have the property
that radiation produces fluorescence as well as a photoreac-
tion resulting in a nonfluorescent product. This property
provides the basis of the photobleaching method.

In the conventional application of the photobleaching
method (FM or FRAP) a small area of a membrane (a few
um?)is irradiated by an intense laser pulse (1-100 mW). As a
result most of the dyes in the irradiated area (IA) are photo-
lyzed to a nonfluorescent product. Little fluorescence will be
detected from the IA at this moment. In a second phase the
diffusion of nonphotolyzed dyes into the IA is monitored by
means of an attenuated laser beam (10-10 000 nW). The in-
tensity of this beam just suffices to monitor by means of a
single photon counting equipment the fluorescence of the
fresh dyes in the IA. However, the intensity is chosen small
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enough to avoid significant photolysis. The recovery of the
fluorescence signal from an initial zero value is recorded and
analyzed to yield the diffusion coefficient of the fluoro-
phores.!? The intensity pattern (strong/weak) is chosen
mainly because of the convenience of the mathematical anal-
ysis of the fluorescence recovery curve: The problem of dif-
fusional reentrance into an area with either rectangular or
Gaussian concentration profile yields an analytical solu-
tion.!»'%!! In this paper we suggest the application of arbi-
trary intensity patterns which require, however, a more in-
volved analysis of the observed fluorescence signal. In order
to facilitate corresponding experiments we provide some nu-
merical and approximate analytical solutions which can be
compared with the observed signals. Actually, variants of
the conventional FM and CFM photobleaching method in-
volving different irradiation geometries have been suggested
previously.'? However, these variants are still based on con-
secutive strong (bleaching) and weak (fluorescence monitor-
ing) intensity periods.

There are several reasons why more general intensity
patterns are desirable for photobleaching experiments. One
reason relates to the requirement of a sensitive photon de-
tecting device and an intense (laser) light source for an FM
experiment. Another reason lies in the need of sufficient
fluorophore concentrations to produce enough fluorescence
in the weak intensity phase. A third reason is connected with
certain idealized assumptions for analysis of FM experi-
ments, namely that fluorophore transport can be neglected
during the bleaching phase; this condition may be violated
for systems with high mobility.

The difficulties mentioned can be avoided if one applies,

at the cost of a more difficult analysis of the fluorescent sig-
nal, a medium, but constant light intensity {about 10 £ W) to
theirradiated area. This variant of the photobleaching meth-
od termed “continuous fluorescence microphotolysis”
(CFM) has been introduced by us recently.'> We have dem-
onstrated the functionality of this method, but did not de-
scribe the mathematical algorithm needed for the analysis
for the fluorescence signal in detail. This information, appli-
cable in fact to more general intensity patterns than consid-
ered in Ref. 13, will be provided in this paper.
' In Secs. II A and II B, the theory of photobleaching
processes is formulated in terms of diffusion-reaction equa-
tions on planar, as well as on spherical surfaces and expres-
sions for the relevant observables are derived. In Sec. II C, a
spatial discretization scheme is introduced which facilitates
an evaluation of the fluorescence signal as shown in Sec.
IID. In Sec. I E we introduce an alternative algorithm
based on a spatial as well as temporal discretization scheme;
this description covers experiments with time-dependent in-
tensity patterns. Section II F provides an analysis of the
long-time behavior of the fluorescence signal. In Sec. II G
we furnish a generalized moment expansion of the fuores-
cence signal which provides the fastest method for an exact
evaluation of the signal for comparison with the observation.
Section IT H introduces an approximate analytical descrip-
tion of the fluorescence signal which is suitable for fast, but
approximate calculations.

Section III provides several applications of the CFM

method. Since the potential of the CFM method has been
illustrated before,!* this section addresses mainly those
aspects which are concerned with the theoretical basis of the
method. However, in Sec. III A we show that diffusion coef-
ficients ranging from 0.001 to 10.0 um?s~' are determined
reliably by the CFM method. In Sec. III B we compare ap-
plications with Gaussian and rectangular intensity profiles.
In Sect. III C we will discuss the effect of the membrane
geometry, i.e., planar or spherical, on the CFM signal. Sec-
tion III D shows that the theory developed can be applied to
conventional FM photobleaching. In particular, we will dis-
cuss the problem of an immobile fraction of fluorophores.
Section III E addresses the convergence property of the gen-
eralized moment expansion of the fluorescence signal and
Sec. III F the implementation of the suggested algorithms on
lab computers.

Il. METHODS
A. Concept and observable

The fluorescence signal of a CFM experiment (see, e.g.,
Figs. 2(b) and 2(c)] serves as a measure of the concentration
of nonphotolyzed fluorophores in the IA (IA = irradiated
area). The signal exhibits an initial fast decay followed by a
slower decay. The fast decay reflects the photolysis of fluoro-
phores initially located in the IA, the slow decay reflects the
depletion of fluorophores from parts distant of the IA which
have entered the IA by diffusion. The fit between observa-
tion and an appropriate model is the basis of the CFM meth-
od and yields the diffusion coefficient D of the fluorescent
species. Efficient theoretical methods to simulate the model
had to be developed and will be described in the following
sections.

The experimental CFM apparatus used in this work is
the same as described in Ref. 13. It consists of a fluorescence
microscope, a single-photon counting system, an argon la-
ser, a shutter, and other optical devices. In the following a
short summary of the experimental procedure is given, for a
more detailed description one may refer to Ref. 13. After
passing some optical devices the laser beam is imaged into
the microscope and then irradiates the IA on the membrane.
Within certain limits the size, shape, and intensity of the IA
can be selected. While suppressing the direct laser scatter
beam by a dichromatic beam splitter, the time dependence of
the emitted fluorescence is monitored by a photomultiplier.
To obtain a measure of the number of active fluorophores in
the IA, the integral number of fluorescence photons within
consecutive equal-time intervals is detected and averaged
over the intervals.

B. Description of the CFM model

Excitation of a fluorophore C leads either to fluores-
cence or less likely to irreversible photolysis of the fluoro-
phore. The product P of this reaction is inactive, i.e., does not
fluoresce anymore. We will describe this photochemical re-
action as two consecutive first order processes

hv photolysis

C=C* — P
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In a CFM experiment the interplay between the diffusion of
the unbleached chromophores C into the IA and photolysis
C—P within the IA is being monitored. The time develop-

ment of the concentration P (r, t) of nonphotolyzed fluoro-

phores C is described then by a diffusion-reaction equation

a — —_
EP(r,t)ml(r)P(r,t)

k(r)P(r,t), (2.1)
where/ (r) is the (differential) diffusion operator, & (r)the (sca-
lar) reaction operator, and P (r, 0) = 1 the initial distribution
of the fluorophores. In Eq. (2.1), the depletion of the fluoro-
phores by the photolysis is described by the rate constant
k (r). The spatial dependence of & (r) is equated to the light
intensity profile in the IA. As the typical irradiation in any
observation amounts to about twice the characteristic diffu-
sion time through the IA, it is sufficient to consider Eq. (2.1)
only in the immediate neighborhood of the IA. Therefore, in
case of a circular IA and isotropic diffusion the distribution
in Eq. (2.1)is radially symmetric and the total diffusion space
can be limited by a reflective boundary condition at some
distance [r| = R. This boundary condition is necessary for
the numerical solution of Eq. (2.1) and, furthermore, allows
to simulate the influence of a finite membrane size on the
fluorescence decay curve (e.g., see Sec. III D). This is of in-
terest as photobleaching experiments may be performed on
single cells or on native membrane systems which exhibit

-two-dimensional compartments.'* The influence of the
three-dimensional membrane geometry on the observable
will be discussed in Sec. III C (e.g., the difference of diffu-
sion-reaction processes on flat or spherical membranes). As
will be shown later the influence appears to be relatively
small for CFM experiments. The radially symmetric diffu-
sion operator and the appropriate boundary conditions for a
planar geometry are

3 1 4 19 4
at (8r2+ ) 2w
(2.2)

)
or

— P(r,t)=0,

or 0 R

where D is the diffusion coefficient. For a spherical mem-
brane geometry the center of the IA was chosen to be coinci-
dent with the lower pole of a sphere with radius S and one
obtains with » = cos € (normalized projection onto the polar
axis) instead of Eq. (2.2):

1) = ii(l— )%,

(2.3)

9 Pir,t)= 9
arl _u ar
where R must be in the interval — 1 <R<1.

No attempt was made to incorporate the hydrodynami-
cal interpretation of diffusion processes in membranes into
our investigations. This subject and the difficulties associat-
ed with two-dimensional diffusion were discussed by Saff-
man and Delbriick in Ref. 15.

The intensity profile & (r) is assumed to be either of rec-
tangular or Gaussian shape corresponding to a cutoff of the

P{r,t)=0,
R

central part of the laser beam or to an attenuated and focused
laser beam, respectively. However, the numerical solutions
described below are applicable to any profile, e.g., also to a
raster intensity pattern.'? For a rectangular profile on a flat
membrane one has

k(r)=koH(a—r), O<r<R, (2.4)

where k, is the reaction rate constant, a < R is the radius of
the circular IA, and H (x) is the Heaviside function defined as
H (x) = 0forx<0and H (x}) = 1 for x > 0. The Gaussian pro-
file on a plane can be described by

k (r) = 2k, exp( — 2r*/a%, O<r<R. (2.5)
On a spherical membrane the rectangular profile is given by
kir)=koH{a—r), —I1<r<R<1, (2.6)
where a is the normalized projection of the IA boundary

onto the polar axis. Furthermore, the Gaussian profile on a
sphere can be described by

k(r) = 2kg exp[ — 2(1 + r)/(1 + a)},
— 1<r<R<, (2.7)

which was obtained from an area conserving mapping of a
Gaussian distribution onto a sphere [*—2S%7(1 + cos 6,)
~1 + r]. This corresponds to a virtual deformation of an
irradiated cell into a sphere. In case of equal size IA’s and
large R /a ratio the above profiles lead to equal total radi-
ation doses fk (r)dr.

The theoretical observable N (¢ ) ina CFM experiment is
the fluorophore concentration averaged over the intensity
profile in the IA:

N(t) =f dn(r)P(r, t )k (r), - (2.8)

where r, =0, dy(r)=a2ardr and r,= —1, dy(r)

= B27S *dr for a flat and a spherical membrane geometry,
respectively. The constants a and S are chosen such that
N (0) = 1. The actual observable Ny in the experiment is re-
lated to Eq. (2.8) by piecewise integration of N (¢ ) over some
time interval 7,

Nyp(t)) = (1/7) j N () (2.9)

wheret;, =(—l)r,i=12,....

An analytical solution of Eq. (2.1) which provides the
accuracy necessary for a quantitative analysis of observation
was not found in any case. In case of a planar system with
rectangular intensity profile the function k (r) is piecewise
constant and the solution of Eq. (2.1) can be expanded into a
series of zero-order Bessel functions. However, this expan-
sion does not seem to be more efficient than the general nu-
merical solutions described below. The discretization of the
diffusion-reaction system is defined in the next section, the
formal solution of the ensuing equations is given in Sec. II D.
In Sec. IT H will be described an analytical approximation
for N (¢ ) which sufficies for an estimate of the diffusion coeffi-
cient in a CFM experiment.

C. Discretization

A finite difference approximation applied to the diffu-
sion-reaction system (2.1) yields a master equation in a dis-
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crete space (Fy, 73, - - -» Iy = R ). In this approximation the
Brownian motion of the fluorophores is represented by
jumps between neighboring lattice points7; _ 1, 7, 7i 4 1 - The
continuous diffusion-reaction operator / (r) — k (r)is replaced
by a transition matrix L — K and Eq. (2.1) is replaced by

a = —_—
ZP(t)=(L— KP. (3.1a)

Thevector P(¢) = [P (r, t),- - ., P(r,,t )] describes the fluoro-
phore concentration at the lattice points and obeys the ob-
vious initial condition P(0) = (1, 1, ..., 1). The observable
N (t) from Eq. (2.8) is approximated by a weighted sum over
the components of P(z):

Nie)= S K80

where the 7; correspond to the continuous measure d7(r) in
Eq. (2.8) and K; are the diagonal elements of the reaction
matrix K. Suitable discretization schemes which were con-
structed following Refs. 16, 17, and 18 are provided for the
planar as well as the spherical case in the Appendix.

(3.1b)

D. Complete solution

The diffusion-reaction operator in Eq. (2.1) can be as-
sumed to be time independent for CFM experiments. There-
fore, the formal solution of Eq. (3.1a) can be written as

P(t) = exp(Dz )P(0), (4.1)
whereD = L — K. Theobservable N (¢ ) givenin Eq. (3.1b) can
also be written as

N(t)=K"nP(), (4.2)

where K is the diagonal of the reaction matrix K and n is a
diagonal matrix with the elements 77,, . . ., 77, . The diffusion-
reaction matrix D is a nonsymmetric tridiagonal matrix
which may be symmetrized by the similarity transformation
S defined as a diagonal matrix with elements

Sllzl, S —‘S_],—lvpu—-l/Dl-—ll (4'3)

for n>i>2. Using the detailed balance condition (A5) it fol-
lows that:

Sq=nS"" (4.4)
The matrix D = S~!DS is a symmetric tridiagonal matrix
with the elements

D _Dn’

Dii+1 = Di+1i =VDii+]Di+li . (4-5)

The spectral expansion of D yields real eigenvalues 4; and a

complete system of orthonormal eigenvectors. Let
= (U*)~! be the orthogonal matrix containing all eigen-
vectors as columns. One can then represent D by
D =uau+, (4.6)
where A is a diagonal matrix with the elements A, ..., 4,.

Using D = SUAU*S~
over exponentials

P(t) = SUexp(Az )U+S~'P(0)
= Zﬁ, exp(d;t). (4.7)

! one may write Eq. (4.1) as a sum

[REICIIVIR YR

Similarly, one obtains for the observable N (¢ ) in Eq. (4. 2)
N(t)=K*qSUexp(At )U*S~'P(0)

= 3 expld,t JU*SnK), (USR],

i=1

This expression can be simplified. From Eq. (4.4) one obtams
U+tSyK =7,U*S™ 'K

and since
U+S—'P(0) = A~ 'U+S~ (L — K)P(0)

and together with Eq. (A4) and KP(0) =
U+S~'P(0)= —A~'U*S!

Finally, one obtains for the observable N (¢),

Ni)= E expid;t)a;,

i=1

K, one gets

where
— (q/ANUFSTIK);

= /2 S UK, ) 43)

=1
The operator L is negative definite for K##0 (see Sec. 11 C)
This and Eq. (4.8) yields the conclusion

a,>0. (4.9)

The relations (4.8) and (4.9) can also be shown to be true for a
diffusion-reaction system in an external field, where /(r) in
Eq. (2.1) is given by a Smoluchowski equation. It appears
that the positivity of o; is caused essentially by the fact that
the observable N (¢ ) is determined by the reaction (intensity)
profile k (#). This property will be important in applying the
generalized moment expansion developed in Sec. II G.

As an eigenvalue determines exactly one normalized
eigenvector in a tridiagonal matrix, the eigenvalue problem
for the matrix (4.6) is nondegenerate. The numerical solution
was performed with an implicit QL method.?* Equation (4.8)
allows then to evaluate N (¢ ) for arbitrary times. Obviously,
this method has the disadvantage to be CPU time and mem-
ory intensive (n = 100). The generalized moment expansion
in Sec. II G will provide a much more efficient method for
the approximate evaluation of Eq. (4.8).

a

Il

i

E. Crank-Nicholson scheme

In addition to the spatial discretization in Sec. II C a
time discretization may be introduced and the time integra-
tion be performed numerically. With the equidistant discre-

" tization of the time ¢,

=(j—1r, j=12,...

the Crank-Nicholson scheme'® for the time integration can
be applied,

Pt; ) =Pt;)+0.5(t ., — 1)

X(L—=K)[P@ )+ P:)]-
(5.1)
This implicit and recursive equation can be obtained from
Eq. (3.1a) by averaging the forward and backward difference

approximation of the time differential. In this way, the
scheme yields a convergence in 7°. At each time step a linear
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equation has to be solved. As the diffusion operator corre-
sponds to a tridiagonal matrix, this equation can be solved
recursively. The explicit algorithm is given by the following
scheme:

Initialization: (5.2a)
D, ., =10
oDy
1= ]
_‘D11+2/7'
Civ1 = Di+”+2 s l=1,...,n—1,
=Dy i —Dijyig +2/7
D, +2/7
a; = ———— i=1,...,n
Dii+1
bi+l=—&:tl_) i=1’ yn—‘ly
Diirit2
Pl(to) =P2(to)= s =Pn(t0) =1, Pn+1(t0) =0 (S-Zb)
Iteration:

d, = ¢|[P\(tx)a, + Pyt)],

dipv=ci o {Prlti)ai g + [Pilte) +d; )b,

‘ +P,-+2tk)}, l=1,...,

Pn+1(tk+1)=0)

Pn(tk+l)=dn’ )

Pt py)=d; +c:Piyy(tisn)

The algorithm allows a time dependence of the diffu-
sion-reaction matrix D (e.g., see Sec. III D). However, in this
case the coefficients a;, b;, ¢; have to be redefined at each
step. The observable can be obtained from Eq. (3.1b) at the

time steps ¢;. The corrected observable N in Eq. (2.9) can
then be approximated by

NE(ti) = O'S[N(ti) + N(ti+ i )]

The large number of time steps required for long simu-
lation periods is a disadvantage of the Crank-Nicholson
scheme. On the other hand, the algorithm allows the treat-
ment of time-dependent diffusion-reaction systems (cf. Sec.
III D) and with a small modification nonlinear reaction sys-
tems, e.g., a second order reaction term could be incorporat-
ed into Eq. (5.1) by addition of a term like

Pt )K? P2, ).

F. First passage time approximation

n—1,

i=n—1,..,1

The diffusion-reaction operator in Eq. (2.1) together
with a reflective boundary condition at finite » = R has a
discrete, negative spectrum yielding the expansionsfor P (r, ¢ )
and N (z),

P(rt)=Zc,P; exp(d;t),

(6.1)
N(t)= 24, exp(4;1),

where 4, = ¢, fdn(r\P;(r}k (r) and A;,, <A4; <...<Ay<0.
As our experience with the numerical expansion in Sec. II D
has shown, the largest eigenvlaue 4, has always a great sepa-
ration from all other eigenvalues. For a finite and not too
large diffusion space this will also be true in Eq. (6.1) and at
long times the A, term will dominate. Hence, P (r, tJand N (¢)

2151
show the asymptotic behavior
P(r, t)=coPo(rlexp(dot ),
(6.2)
N(t)=Ayexp(Aot).

An approximate but, nevertheless, analytical expression for
this eigenvalue A, and the corresponding quasistationary
distribution Py(r) will be derived now for the planar case (2.2)
with a rectangular profile (2.4).

As Py(r; t) = Py(rexp(4o? ) is a solution of the diffusion-
reaction systems (2.1) and (2.4), one has

a

[ ’zarz *y
for 0<r<a,ie.,r mside the IA. As the decay of the quasista-
tionary state Py(r, ¢ } is diminished by diffusion from the sur-
roundings, the absolute value of A, is smaller than k,, i.e., 1/
[Aol > V/kgor kg — |Ao] > 0. Since there is a reflective bound-
ary condition at the origin, only the modified Bessel function
I, can be a solution of Eq. (6.3), '

Pyr) = Io(r, /ﬁii)
D

for 0<r<R. Outside the IA P, is governed by a free diffusion
problem:

ko + Ao)/D ]Po(r) =0 (6.3)

(6.4)

iPo(r, t)y=1({NPyr, t),

or »
where a<r<R. The boundary condition representing the
continuity of the logarithmic derivative at the 1A boundary
is

(6.5)

Py, 1) = Pofa, 1)p1P9)

rla I(Ba)
where 8 = (ko + Ay)/D . The reflective boundary condition
at large R is similar to Eq. (2.2). Using the initial condition
Py(r, 0) = P,y(r) one can derive a relation for A according to
the following arguments. Defining Pyrt) = Py(r,
t), SR dn(r)Py(r)] ! one obtains

© R
» f dt| dn(rPyrt)= — 1/A,
0 a

The left-hand side of this equation is just the first passage
time 7g, for the (normalized) problem (6.5). Assuming
Py(r)=~const and |40 €k, it follows from the theory of first
passage times?!

2
Jige L aPPon [x -3 In x

8 21—x?

sl e ]

where x = a/R. P,(r) represents the quasistationary concen-
tration profile in the IA which the dyes assume at times
longer than a®/D and k ; '. The approximation Py(r) =~ const
holds in case of small k,, i.e., low measuring light intensities,
a condition which should apply in situations where the long
time CFM signal is not small. In Table I the accuracy of the
approximation (6.6) for different ratios R /a is shown. A 5PP™*
has been compared with the largest eigenvalue A, of a com-
plete eigenvalue evaluation (Sec. II D) of the diffusion-reac-
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TABLE 1. Comparison of 4 §?"* and the largest eigenvalue 4, of the diffu-
sion-reaction operator.®

R /um
10.0 5.0 2.5 1.25
ko/(s™")
0.01021 0.061 25 0.454 4 7.598
10.0 0.009 97 0.059 09 0.449 1 5.08
0.005 269 0.02591 0.141 4 1.531
1.0 0.005 225 0.025 36 0.1305 0.626
0.000 9249  0.003 926 0.018 4 0.175
0.1 0.0009176  0.003 787 0.015 96 0.063 9
0.000 1001  0.000 4141  0.001 898 0.017 75
0.01 0.0000992  0.000 3977  0.001 63 0.006 39

*The upper values correspond to Eq. (6.6), the lower values correspond to
the numerical solution (Sec. II D) of the eigenvalue problem for j, = 10,
D =1um?s™" and a = 1 um (rectangular profile).

tion operator. Good agreement is reached for a ratio R /
a~10 which is typical for CFM experiments. The inaccur-
acy for a smaller R /a ratio can be related to a breakdown of
|Ao|€ko. The appearance of a quasistationary distribution
P,(r) with time-independent shape opens the possibility of a
time-integrated measurement of the two-dimensional flu-
orescence profile at long times. Such measurement was per-
formed by us. A comparison of the grey level of the observed
profile with P(r) establishes a test of the theoretical descrip-
tion. Furthermore, one may wish to detect possible anisotro-
pies of the fluorescence profile indicating anisotropic lateral
transport in the membrane.

G. Generalized moment expansion

Interpolating the low and high frequency expansions of
the CFM observable N (¢ ), amethod will be developed which
allows to approximate the theoretical fluorescence curve.
The method is based on the Mori-Zwanzig formalism**??
and projects N (¢ ) onto the subspace of selected low and high
frequency modes. The consideration of low frequency modes
obviates the inclusion of a memory term.

1. Determination of low and high frequency modes

The evaluation will be performed for the discretized
diffusion-reaction system, i.e.,, for the master equation
(3.1a). After Laplace transformation of the expression (4.2)
one obtains for the observable in frequency space

Nw) = J:dt exp( — wt )N (t)

=K*q[wl— D]~'P(0), (7.1)

where 1 is the unit matrix. The short time behavior (high
frequency modes) of ¥ (¢ ) is determined by the time deriva-
tives at time ¢t = 0,

aV
—1)pu, =2L| Nt
(=1 =] M)
v+ 1 A
=— 2| )
(v+ 1) dov*+' 1o
= K*nD"P(0), (7.2)
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where o = 1/w and v>0. The z, will be referred to as short
time moments. The long time behavior (low frequency
modes) can be described by the quantities

i,y =f dtt*N(t)
0

Nw)

0

av
dw”
=(— 1)+ VK 9D~ P(0)

=(=1"

(7.3)

for v < 0 and will be referred to as long time moments. Com-

“bining Eqs. (7.2) and (7.3) the moments can be expressed as

matrix elements of some powers of the operator D,

i =(—1YK*D'P(0), (7.4)

where i may be positive or negative. The moments y; repre-
sent the contributions of the modes D’ P(0) to the observable.
Usually, only the high frequency modes are included in the
expansion. But in our case the low frequency modes actually
represent the more important contributions to the observ-
able. This will be demonstrated in Sec. III E.

For the numerical evaluation of Eq. (7.4) the vectors
P,,Q,,

P, =D"PPQ, =D~ "P(0)
are determined in a recursive way by P,,, =DP,,
DQ, . =Q,, and Q, =P, =P(0). As D is a tridiagonal
matrix the solution of these equations can be obtained easily.
The moments u; may then be evaluated by use of Eq. (7.4).
The cost for evaluating a single moment corresponds ap-
proximately to the evaluation of a single time step in the
Crank-Nicholson scheme described in Sec. II E. The effi-
ciency of this calculation with regard to the low frequency
modes is determined by the structure of the matrix D. As a
diffusive process only allows transitions between two neigh-
boring lattice points the inversion is trivial, but in the general
case the inversion may be the limiting factor for a general-
ized moment expansion. '

2. Construction of a Padé approximant
The purpose of this section is to find a sum of exponen-
tial functions n(t ) with a minimum set of parameters a;, 4,,
k+m

n(t)= 3% a; expldt),
=1

whose (2m + 2k ) moments agree with those of the observ-
able N (t), i.e.,

(7.5)

f dtt*[N(t)n(t)] =0, v=0,1,...,2m—1,
0

g [Nt)—n(t)]=0, v=0,1,...,,2k—1. (7.6)
at”lo
Transforming Eqgs. (7.5) and (7.6) into Laplace space one ob-
tains
9 | [N@)—#@)] =0, v=0,1,...,2m—1,
dw” lo
(7.7)
9| (Nw)— )] =0, v=1,2,...2%,
do*lo
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where 0 = 1/w and fi(w) is a rational fraction. It will be
shown that #(w) may be represented asa [k + m, k +m — 1]
Padé approximant in the form??

hw)=a*[wA, + A,] " 'a
=a*[wl+A['A,] " A, (7.8)

where 1 is the unit matrix and the vector a and matrices A,
A, are defined as

a=:u—m+i9 )
(Al)i,j =H _omyi+js
(A2)i,j =M _omtitj+1s (7.9)

where , =0,...,k+ m— 1. Asisshown below the inverse
in Eq. (7.8) is well defined for m + k < n. Furthermore, the
matrix A ' A, has a Frobenius normal form

0O 0 ... 0 %o
1 0 .

Ar'A, =0 1 .. . , (7.10)
0 0 1 Yk—f-m—l

where the y; are defined by (A7), =g _,, . ;' . Using the
right-hand side of Eq. (7.8) together with Eq. (7.10) one can
show that Eq. (7.7) indeed is satisfied. For the long-time mo-
ments
dw”
one has
Arla=em*!,
(Al—lAz)em+1 — em+2’
S e s

atem—V =4 _ iy

Alw) = (— 1)va* (A 'A) -+ DA g,
[¢]

where e’ is the ith unit vector and, therefore,
dw”

v=0,1,...,2m-—1.

—-—v-1

Alw) = (—1)"Viu ,

Similarly, for the short-time moments holds (§ = 1/w)

do*lo
Using (A;7'A)""'e”*! =e™* and a*te™+¥ =pu,_,
follows

Py

do”

Alw) = —(— 1)va*(A71A) 1 Af a.

Mo)=(—1)"""u,_,, v=1,...,2k.

0

3. Evaluation of the Padé approximant

The expression (7.8) is not yet suitable for practical pur-
poses. In this section the inverse operator in Eq. (7.8) will be
expanded in an orthonormal basis defined by the eigenvalue
problem

(1, A+ Ab, =0 (7.11a)
or, equivalently,
A 1+Ar ‘Az)b” =0, (7.11b)

For the diffusion-reaction system (3.1a), this eigenvalue
problem has the following properties: (1) 4, is positive defi-
nite; (2) the eigenvalues 4, are real and positive; (3) there is
no degeneracy of the A, ; (4) the space spanned by the eigen-
vectors b, is complete; (5) Eq. (7.8) may be expanded in this
space and one obtains
k+m
n(t)= Y exp(—A,t)bla)/(b;FAb,). (7.12)
=1
In general the eigenvalue problem (7.11) may include com-
plex eigenvalues, e.g., in systems with a threshold behav-
ior,** and an expansion like Eq. (7.12) may include polyno-
mials in the time variable ¢.
To prove property (1) we note that the spectral expan-
sion (4.8) yields expressions for the moments u, by means of

aV n v v
=| Nit)= Y adi=(—1u,
at¥io i=1
forv=0,1,...,2k—1and
f dit*N(t)=(— 1)WY ad ¥+
0 i==1 .
=vig_niy
forv=0, 1,..., 2m — 1. The moments can, therefore, be

expressed as follows:

o= S a(—A)

i=1

forv= —2m,..., —1,0,1,...,2k — 1. Now, the positi-
vity of the matrix A, can be shown:
k+m—1
xTAx = E Xilk = 2m + i 4 j%j
ij=0
k+m—1 n .
— Z zxixjal("‘il)—zm—“*_j
Lj=0 [=1

k+m=-—1 n .
=S S (=) )
ij=0 i=1
n k+m—1
=zaz(—/11)_2m{ >
I=1

2

—xi(/l,)i] >0. (7.13)
i=0
The last expression is never zero since with a; >0, 4; <0,
and A;#A,; for i#j [see remark after Eq. (4.8)] the polyno-
mial  p) =Xo+X, ¥+ X )+ Xy YT
must not have more than (k + m — 1) zeros. The positivity
of A, can be shown in a similar way.

To prove property (2) we note that the positive definite-
ness of A, and A, implies the existence of positive, symmetric
matrices F, G such that A, = F?, A, = G?. The eigenvalue
problem (7.11) may then be written as

A, 1—F~1AF~YFb, =0, (7.14)

- where

Fo'AF~! =F~'GGF ' = (F'G)F~'G)*.

It follows that the eigenvalues A4, are real and positive and
the space spanned by the corresponding eigenvectors is com-
plete [property (4)].

In order to show property {3} we consider the eigenvalue
problem (7.11) including the Frobenius matrix A;"'A,. The
special structure of the Frobenius matrix determines exactly
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one eigenvector to each eigenvalue.'® As was already shown
the eigenvectors span a complete space and, therefore, no

degeneracy may occur. ,
Finally, property (5) will be shown. From the nondegen-
eracy property and by taking the difference between the

equations
b (A; — A, )b, =0,
bt (A, — A b, =0,
ie.,
(/11» _A'p)b:- Alb,u =0,
one obtains the relation
bfAlby =5v,ub:Albv’

where 8,,, is the Kronecker delta..Expanding A[" 'a into the
complete basis set b, one obtains

Al— la = y}‘ b# N
M
where B, = (b,Fa)/((b,” A;b, ). Using
(@l +A'A) "D, =@+4,)7 ',
it follows
at(wl+ A7 'A) A a

= > (0+4, )~ '(bFa)/(b}Ab,)
pu=1
and the proof of property (5) is complete.

4. Numerical algorithm

As our experience has shown, the calculation of the mo-
ments (7.4) has to be performed very accurately. A scaling
was introduced in order to avoid numerical singularities due
to the large variations in the order of magnitude of the ma-
trix elements of A, and A,. The scaling was applied in the
form

A} =8SA,S, 4;=SA,S,
where S is a diagonal matrix with the elements s; = a;. The
solution of the eigenvalue problem (7.11) may then be per-
formed in the scaled vector space where the Frobenius form
of the scaled matrix (7.10) is conserved. Using this special
property one may evaluate the eigenvectors recursively from
the eigenvalues.'® In our setup a QR algorithm?® was used to
obtain the eigenvalues.

H. Approximate analytical description

In this section an approximate analytical expression for
the CFM signal will be derived. The resulting expression
exhibits a systematic error but, nevertheless, suffices for an
estimate of the diffusion coefficient and photochemical rate
constant. The application of the analytical approximation
may be advantageous if a very fast analysis of the CFM sig-
nal is required. ‘

The fluorophore distribution P (r, ¢ ) is governed by the
diffusion-reaction equations (2.1) and (2.2). Let P(r, ¢ r,, )
denote the Green’s function for this equation corresponding
to the initial condition

P(r, t =ty|r, t5) = 8(r — 1y).

a’' = Sa,

(8.1)

The nonreactive Green’s function for & (r) = 0 is denoted by
Py(r, t |r,, t,). This function obeys the adjoint equation
— 2 Prs il £) = DYy, 1l 1) 82)
with an initial condition like Eq. (8.1) and with boundary
conditions like in Eq. (2.2). Multiplication of Eq. (2.1) by
Pyr,, t,|r, t)and of Eq. (8.2) by P(r, t |ry t,), substraction and
integration over # and r yields for the left-hand side

fd er Idt [Po(l‘l, t1|"’ t)g;]’(r, t ’ro, tO)

+ P(r, t|r,, to)gpo(rh tyr, 1)

= Jd 2r[Pyfry, 1,]r, 1))P(r, t|res o)
— Pyfry, 1], )P (r, 45|10, 2o)]
= fd 2r[8(ry — 1)P(r, 2;|rg, 2)

— Py(ry, ;]r, 25)8 (r — 1)]
= P(ry, t,|rg, to) — Po(ry, 1]ro, to).

For the right-hand side follows because of the self-adjoint-
ness of the Laplacian

.
[ arpye, nlr, 10V — k01215, 2l 1
I .
— P(r, t|ro, t,)DV?Py(ry, t,]r, )}
= — fd 2 (" ar Pyry, ty]r, £)k (r)P(r, £ |ry, £).
3

Hence, one obtains the Lippman-Schwinger?® equation

P(r, t|rg, to) = Po(r, t |ro, to)
- fdt ’Ja’ 2P Pyofr, £ |0, t Ve (X)P (X', | oy L)
0

This equation had been derived in Ref. 26 in a more general
context. Average over the initial condition f(r,) = 1 yields
with

f dro fIEP(r, £ Tor f0) = Plr, 1),

J‘dr0 S(ro)Py(r, t g, 25) = 1,
the integral equation for the CFM distribution
Pr,t)=1-— J-tdt ’fd 2 Py, t |, t )k (2)P(x', 2').  (8.4)
The CFM sign:l is given by
N(it)= fd rk(m)P(r, t). (8.5)

If one assumes in analogy to an approximation introduced
by Wilemski and Fixman?’ that

fd 2k ()Pylr, t |1, t') = g(r', £ — 1)

is independent of r’ over the domain where k (r')#0 one ar-
rives at the approximation
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N(t)zK—fdt’S(t——t’)N(t’) {8.6)
with R

Sit—ty=(1/K )fd r|d? k(r)Pyr, t ¥y )k (r')

' (8.7)

and

Kzfa’zrk(r). (8.8)
The approximation involves the neglect of the term
fdt ’Jd rk(r)Polr, tr', ¢ )k () [P(r, ¢ ) — ?’(t 11,  (8.9)

where

f d* P(r', t"k(r)

Pit)= (8.10)

J.a' 7 k()

This is the only approximation introduced here. This as-
sumption cannot be improved systematically which is the
reason why the expression arrived at in the following cannot
be improved in a straightforward way.

From Eq. (8.6) one obtains with z, = 0,

N(0)=K,
d 2
EN(O) = —SON0)= — fd rk2(),

which is an exact relationship as can be shown considering
the limit 7—0 of the formal solution

N(t)= fd % k (r)explt [DV? — k (1)1} (r) (8.11)

with f(r) = 1.

The free particle correlation function S (¢ — ¢') can be
evaluated as follows. The free particle Green’s function can
be written

Py(r, ¢ |r'0) = (4Dtm) ™ 'exp[ — (r — r')*/(4Dt )]

= (4Dtm)~"exp[ — r*/(4Dt )]

X exp[ — r2/(4Dt ), (8.12)
where?®
J = exp[rr’ cos(¢p — ¢ ')/ (2Dt )]
= Ifz) + 22& (elcos[k (¢ — 4 )]
(8.13)

withz = rr'/(2Dt ), azimuthal angles ¢, 4 ', and I, represent-
ing the modified Bessel functions. Since k (r) is radially sym-
metric, evaluation of S (# — ¢ ) involves an azimuthal average
of Jover ¢—¢ ' and, hence, only the leading term in the above
series expansion contributes. Therefore,

4 f rdr J- rar k(r')k(r)

4DtK

o ) gl )
I, exp! .

4Dt 2Dr¢ 4Dt

S(t)=

(8.14)

X exp(
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Employing the expansion?®

2 4
Ijz) =1+ (?__1/32)__ ___(Z'?Z) Foen, (8.15)

one obtains

S(t)=(4nDt/K) 3 S2t), (8.16)

S,(t)= (l/n!)fdyy" exp( — y)k (V4Dry). (8.17)

In case of a Gaussian k (r) [see Eq. (2.5)] one can evaluate S (t)
in a closed form. One first obtains
K = ra’k,,
(8.18)
S, = 2ko/(1 + 8Dt /a?)"+!,

from which one arrives at
S(t)=ko/(1 + 4Dt /a?).

In case of a rectangular & (r) [see Eq. (2.4)] one evaluates

K = ma’k, (8.20)
and
S(t)=(4Dtky/a®) 3 o2 (a*/[4Dt ),
n=0
(8.21)
%) = (1/n) f dy y" exp( — ).
For n>1 holds
f dyy" exp(—y) = —x" exp(—x) + nlo, _, (x)
0
or
0,(x)= —x" exp( —x)/nl + 0, _,(x),
(8.22)

oofx) = 1 — exp( — ),

which provides a recursive algorithm for the evaluation of
0, (x). The asymptotic behavior

S(t) ~ (4Dtko/a*){1 — exp[ — a*/(4Dt)]}?

~koa*/(4Dt)
agrees with that of the Gaussian profile for identical radi-
ation dose K.

The analytical expressions for S (¢ ) provide a simple al-
gorithm to determine the CFM signal (8.5) by means of the
approximation (8.6). For this purpose one discretizes the in-
tegralin Eq. (8.6) and employs the appropriate expression for
S{t).

The accuracy of the CFM signal (8.6) with S (t)evaluat-
ed according to the expansion (8.21) for a rectangular profile
is shown in Fig. 1. One observes from the comparison with
the exact fluorescence decay evaluated by the Crank-Nich-
olson scheme that the approximate N (¢ ) underestimates the
CFM signal. The small deviation shown in Fig. 1 is typical
for most applications and, therefore, one may employ the
approximate N (¢ ) to fit CFM experiments and, thereby, de-
termine diffusion coefficients. In particular, one may employ
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FIG. 1. Comparison of exact and approximate [Egs. (8.6) and (8.21)] fluores-
cence decay signals evaluated for ¢=2.0 um, D =0.009 pum?s™},
ko =0.005's~" and R = 20 um. The exact fluorescence decay was deter-
mined by means of the Crank-Nicholson scheme described in Sec. II E.

the approximate expression in a first phase of the fitting pro-
cedure and invoke the more time-consuming exact evalua-
tion of the CFM signal only for an exact matching of theo-
retical and experimental decay curves. We note finally that
the approximation is rather poor for the case of a Gaussian
profile & (r) since in this case the assumption made in the
derivation above of an r'-independent g(r', ¢t —¢') is too
crude.

Il. RESULTS
A. Comparison of FM and CFM measurements

In a typical application of the CFM method one mea-
sures the fluorescence decay during illumination at a con-
stant light level and fits the decay curve to the theoretical
description, thereby, obtaining the diffusion coefficient of
the fluorophore.’® As a demonstration of the accuracy and
applicability of the CFM method we will provide a compari-
son of measurements of diffusion coefficients D in mem-
branes and glycerol/water systems with D values ranging
between 0.001 and 10.0 um?®s~'. FM measurements were
evaluated by reading the half-time of fluorescence recovery
from the measuring curve and inserting it into Eq. (19) of
Ref. 2.

One possible realization of a system with greatly differ-
ent diffusion coefficients is provided by a phospholipid mul-
tibilayer system around a temperature-induced phase transi-
tion. The structural changes of phase transitions are
accompanied by changes in the membrane viscosity, i.e., ro-
tational and translational diffusion coefficients, by several
orders of magnitude.?**® To explain these phase transitions
one assumes a transformation of the lipid bilayer from an
ordered crystalline phase in two dimensions into a partially
fluid phase where the polar groups are still ordered but the
aliphatic chains become disordered.>!

Figure 2a compares CFM and FM measurements on
the artificial membrane of dimyrostoylphosphatidylcholine
(DMPC) at the well known phase transition near 24 °C of
this system which produces a viscosity change by four orders
of magnitude. The CFM and FM measurements coincide for
temperatures in which the bilayer is in a fluid state, i.e.,
above 24 °C. Below 24 °C the bilayer decomposes into crys-
talline domains (D about 107° um? s ') and structural de-
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fects (D about 0.1 um? s™'). The fraction of crystalline do-
mains is a function of temperature amounting to 80%-90%
in the 10-24 °C range.’” The diffusion coefficients given in
Fig. 2a for temperatures smaller than 24 °C are average val-
ues of the slow and fast component. The FM values are mar-
kedly larger than the CFM values. This is presumably due to
the different types of data evaluation used in FM and CFM
experiments. In the FM experiment the half-time of fluores-
cence recovery, i.e., a parameter of the early time regime,
was used to compute the diffusion thereby emphasizing the
fast component. In CFM experiments the fluorescence de-
cay was fitted over a considerable time interval (10~20 half-
times) thus putting more weight on the slow component.

Figures 2(b) and 2(c) illustrate the fluorophore decay for
the case of high and low viscosity below and above the phase
transition at temperatues of 18 and 34 °C, respectively.
These figures show that both in the high and low viscosity
limit a satisfactory fit is obtained between the observations
and the theoretical decay curves thereby yielding the diffu-
sion coefficients presented in Fig. 2(a).

In order to test the CFM methods for intermediate dif-
fusion coefficients we investigated the above membrane sys-
tem when half of the DMPC material was replaced by cho-
lesterol. The CFM and FM measurements agree for this
system as shown in Fig. 2(a). The measurements for both
systems involved the dye N-4-nitrobenzo-2-oxa-1,3 diazole
egg phosphatidylethanolamine which because of its size ex-
tends from the water interface to the center of the bilayer.
We have investigated the DMPC/cholesterol system also
with the smaller diphenylhexatriene chromophore which is
expected to reside in the more fluid center of the bilayer.
Figure 2(a) shows that this chromophore does, in fact, exhib-
it a larger diffusion coefficient.

Also to cover systems with diffusion coefficients in the
range around 0.1 um” s~' we have investigated the dye-la-
beled protein fluoresceineisothiocyanate-bovine serum al-
bumine in a glycerol/water mixture. The diffusion coeffi-
cients determined by the CFM and the FM method are
found to agree closely as shown in Fig. 2(a).

B. Comparison of rectangular and Gaussian intensity
profile

In Fig. 3 the predicted time development of the dye
distribution P (r, ¢ ) for a Gaussian intensity profile and a flat
membrane is shown. Initially, the fluorophore concentration
is constant throughout. The photoreaction decreases the
concentration in the IA. Diffusion tends to replenish the
fluorophores in the IA whereby the concentration in the sur-
roundings slowly decreases. Compared to the distributions
of a rectangular intensity profile (cf. Fig. 3 in Ref. 13) the
distributions show some characteristics of a Gaussian func-
tion. However, as depicted in Fig. 4., the fluorescence decay
curves show little difference between the Gaussian and a
rectangular intensity profile of identical radiation dose as
long as the k,/D ratio is not too large. The positive devia-
tions shown in Fig. 4 are caused by the areas of low intensity
of a Gaussian profile where the fluorophore decay is slow.
For smaller k,/D ratios this effect is suppressed by the domi-
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nant diffusion. For all practical purposes CFM measure-
ments may be arranged to produce a curve similar to (b} with
characteristic reaction time 1/k, similar to the characteristic
diffusion time @*/D through the IA' and the difference
between a Gaussian and a rectangular intensity profile may
be neglected for the analysis.

C. Comparison of flat and spherical membranes
The influence of the three-dimensional membrane ge-
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o
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FIG. 3. Time dependence of the dye distribution function P(r, t) in case of
irradiation with a Gaussian intensity profile (@=1 um, R =10 um,
ko =1.0s"'and D = 0.1 um? s~ ', Crank~Nicholson scheme); the distribu-
tions are taken at successive times 0.05 *2” s. n =0, 1, . . ., 11; the spatial
extend of the IA is indicated. .
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FIG. 2. (a) Comparison of FM and CFM measurements on three systems; (1}
dimyrostoylphosphatidylcholine DMPC with the fluorophore N-4-nitro-
benzo-2-oxa-1,3 diazole egg phosphatidylethanolamine in a 5000:1 molar
ratio; this system exhibits a phase transition at 24 °C; (2) a DMPC cholester-
ol (CHOL) system with an NBD-PE fiuorophore in a 2500:2500:1 molar

. ratio; (3) a dye-labeled protein fluoresceinisothiocyanate-bovine serum al-

bumine (FITC-BSA) in a glycerol/water mixture of 92:8 weight ratio; also
shown isa DMPC/CHOL system with the fluorophore diphenylhexatriene
(DPH}in a 100:100:1 molar ratio; the error bars shown result from the mean
=+ S.D. of 5-10 measurements. (b) comparison of observed and calculated
fluorescence decay corresponding to a CFM measurement of the DMPC
system in Fig. 2(a) below the phase transition at 18 °C with the fluorescence
lipid analog 3,3'-dioctadecyloxatricarbocyanine; the radius of the irradiat-
ed area (IA) was ¢ =2.0 um; the theoretical curve corresponds to
ko= 0.005s""and D = 0.009 um? s~ (R = 20.0 um). (c) Same as (b), how-
ever, measurement above the phase transition of the DMPC system at
34 °C; the radius of the irradiated area was a = 8 um,; the theoretical curve
corresponds to k, = 0.19s~'and D = 12.0um? s~ (R = 80.0 um, Crank—
Nicholson scheme).

ometry on the CFM measurements was probed by compar-
ing model calculations on a flat and a spherical surface. As
Fig. 5 shows there are little deviations between the two geo-
metries as long as the size of the IA as well as of the diffusion
area are identical for the two geometries. This is even true for
the case that a half-sphere and a planar, circular region is
irradiated [case (b) in Fig. 5], i.e., in the limit that the size of
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FIG. 4. Comparison of the fluorescence decay for Gaussian (—) and rectan-
gular (. . .) intensity profiles of identical radiation doses for various diffusion
coefficients, (a) D=10.0 um?s~', (b) D= 1.0 um*s~', (c) D=0.1
pm?s~!, (d) D=0.0001 um’s~!, (kp=1s"", a=1pum, R=10 um,
Crank-Nicholson schente).

J. Chem. Phys., Vol. 82, No. 4, 15 February 1985



2158 Briinger, Peters, and Schulten: Lateral diffusion in membranes

100 , ; —

075¢ ]

Intensity

050;

025}

Fluorescence

L

% 2 A 6 8

Time/s

FIG. 5. Comparison of the fluorescence decay for diffusion on a sphere (—)
andinaplane(. . .)for identical areas of the IA and of the diffusion space. (a)
8, =0.142rad, 0z = 1.57rad, S = 7.05 um (sphere)anda = 1 um, R = 10
um (plane); (b) 8, = 1.57 rad, 8z =3.14 rad, S =0.71 um (sphere) and
a=1pum, R =141 um (plane); (ko= 1s~', D=0.5 yum®s~*, Crank-
Nicholson scheme).

the 1A is half of the respective diffusion space for the two
geometries. The slight deviations (first negative and then
positive) can be explained as follows. The circumference of
the IA is shorter for the spherical geometry than for the
planar geometry and, therefore, fewer fluorophores can en-
ter the IA in a certain time interval. This results in an initial,
faster fluorescence decay of the IA, but since the total num-
ber of fluorophores decreases slower a break-even point will
be reached when more fluorophores are inside the IA and
contribute to the fluorescence signal.

As the results in Fig. 5 show, there is little influence of
the membrane geometry on the CFM decay curves. This is
illustrated in Fig. 6 where the time-dependent fluorescence
decay during the CFM of DiO labeled erythrocyte cells is
depicted. The theoretical analysis with flat as well as with
spherical geometries approximately gives identical results
with a diffusion coefficient of D = 0.32 um? s~ and a reac-
tion rate constant k, = 2.0 s~'. This measurement is diffi-
cult to perform with the conventional FM technique due to

. 100 T T T T
‘0
c
0}
< 075 =
[
2 .
g 050 -
0
1
5]
2 025 | -
u
0 1L ) ] 1 1
0 1 2 3 4 5
Time /s

FIG. 6. Fluorescence decay during CFM (Gaussian intensity profile with
a = 0.5 um) of DiO labeled human erythrocyte cells (50 #/ human blood;
washed several times; incubation in isotonic medium, phosphate buffer pH
7.6, 50 pg/ml DiO, dimethylsulfoxid 2.5 Vol %; 15 min, 37 °C); the fitted
curve corresponds to k, = 2.0 s™! and D =0.32 um?s~ and applies in
good approximation to a flat (R = 5.0 um) as well as to a spherical mem-
brane (6, = 0.15 rad, 6z = 1.57 rad, S=3.22 um, Crank-Nicholson
scheme).

cell damage caused by the strong FM photolysis. Compara-
ble data on isolated erythrocyte membranes (ghosts) predict
D=0.2-0.3 um?*s™ 1. ¢

D. Simulation of conventional FM experiments

Conventional photobleaching experiments involve a
time-varying laser profile in the IA. An initial intense laser
beam bleaches essentially all fluorophores in the IA. In a
second recovery phase of the experiment an attenuated laser
beam monitores the transport of nonphotolyzed fluoro-
phores into the IA. During this phase the fluorescence signal
recovers from a zero value back to a fluorescence level
which, in general, is identical to the initial fluorescence level
before the bleaching phase. As already mentioned in Sec.
IT E, the Crank-Nicholson scheme allows us to introduce a
time dependence of the photochemical rate constant in the
diffusion-reaction system and, therefore, can also describe
the FM experiment. As an application of the theory we simu-
late a conventional FM experiment for the case in which the
fluorescence intensity does not return to the initial intensity.
Such behavior has been observed in many cases. The ques-
tion arises if this behavior is due to a certain immobile frac-
tion of dye-labeled lipids or if it may be due to a finite-size
diffusion space such that the bleaching period of the FM
method bleaches a nonnegligible fraction of available fluoro-
phores. In particular, one wishes to examine whether the
observed fluorescence recovery curves allow to distinguish
between these two possibilities. In Fig. 7(b) we have simulat-
ed an FM experiment assuming the existence of an immobile
fraction of fluorophores. In Fig. 7(a) no immobile fraction
has been assumed but the diffusion space has been limited to
arelatively small area. Therefore, the total number of fluoro-
phores is reduced to 72% after the FM photobleaching. The

_diffusion coefficient for case (a) was chosen such that the

recovery curve compares to that of case (b) as closely as pos-
sible. The good comparison shows FM experiments with
partial fluorescence recovery cannot distinguish between a
limited diffusion space.and an immobile fraction of fluoro-
phores. It should be noted that case (a) represents a FM con-

1.00 ] ] I I T

0.75 } a ]

050 —

025 —

Fluorescence Intensity

I S S N
0 10 200 400 600

Time/s

FIG. 7. Numerical simulation (Crank-Nicholson scheme) of a conventional
FM measurement; the fluorescence bleaching extends over 1 s, the consecu-
tive fluorescence recovery extends over 600 s (note different times scales!).
Cuve (a): R =20pum and D= 1.0 zm® s~', curve (b): R = 50 um, D = 3.0
pm?* s~ and 25% immobile fraction; [k,(0 < t < 1.0s) = 10.0s™/, rectangu-
lar intensity profile, @ = 10 um].
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dition not suitable for the mathematical analysis developed,
for instance, in Ref. 2.

E. Convergence of the generalized moment expansion

In Figs. 8(a), 8(b), and 8(c) several generalized moment
expansions for the fluorescence decay of a representative
CFM simulation are depicted and compared with the exact
solution of Eq. (2.1) obtained by application of the methods
described in Sec. IT E. As Fig. 8(a) shows the expansion in-
volving eight long time and eight short time moments agrees
well with the exact solution. The contribution of the long
time moments appears to be more important for the present
problem than the contribution of the short time moments as
can be seen in Fig. 8(b) which compares the descriptions for
the limiting cases that either eight short or eight long time
moments are considered. Finally, Fig. 8(c) represents a de-
scription which includes two short time and six long time
moments, and which gives sufficient accuracy for an analysis
of the experimental data. Compared to the Crank—Nichol-
son scheme the generalized moment expansion performs fas-
ter by about a factor 10.

F. Implementation and numerical convergence

The calculations were performed on a SPERRY UNI-
VAC 1100/82, a CDC CYBER 175, a PDP 11/23,a VAX
11/750, and a HP 85 top desk computer. The algorithms
were written in standard ANSI FORTRAN-77 and may be
implemented with minor modifications on main frame com-
puters as well as on lab microprocessors. For the Crank—
Nicholson scheme there is also a BASIC version available.

For a numerical convergence of the spatial discretiza-
tion (see the Appendix) of better than 1% the grid parameter
u was set to 12 and 4 was set to 0.0003. For the time steps 7 of
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the Crank-Nicholson scheme an empirical formula was de-
veloped,

r<min[0.084 1, /(7D ), 0.05/k,),

where 4, is the area of the IA given by 4 ;, = ma® for the
planar case and 4;, = 2mS?(1 — cos 8,) for the spherical
case. In most cases the experimental photon count interval
already fulfills this formula. A fit which was in reasonable
agreement with the experimental curve could be obtained
after typically five to ten calculations. The fit was performed
interactively on a graphics terminal.
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APPENDIX
I. Discretization for the planar case

In the following, the dimensionless units
/ ty=r2/D

are chosen where a = ry(u — 1) is a measure for the coarse-
ness of the equidistant discretization of the spatial coordi-
nate r,

n=(j—=1+h j=1,..,n,

r—r/ry,  t—t/t,,

r, =R/r,, h<l,

and u is the lattice point corresponding to the radius a.

In order to avoid a singular behavior of the matrix L
defined below one has to chose 7, = h 7#0. The difference
approximation of the diffusion operator / (r) was performed
similar to Refs. 16, 17, and 18 and yields a nonsymmetric
tridiagonal matrix L which approximates the continuous op-

1.00 T T T T I I ] (b)
exact T
oy (0,8) —
R - - - (80) ]
\
050 —
\
| A} -
\
- \ —y
025 .
[ T S R |
0 15 30 45 60
Time/s

FIG. 8. (a) Accuracy of generalized moment expansions (P, @) for the flu- .
orescenceintensity N (t ); theexpansion (8,8) agrees with theexact N (¢ ) within
the accuracy of the drawing. P(Q) is the number of short time (long time)
moments. (D = 1.0 um?s™}, ko =2.5s7}, a = 1.0 um, R = 10.0 um)}; (b}
comparison of the moment expansions (8,0) and (0,8) with the exact fluores-
cence decay; (c) comparison of the generalized moment expansion (2.6) with
the exact fluorescence decay. The exact fluorescence decay was determined
by means of the Crank—Nicholson scheme.
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erator up to second order in 7
Lj,,=1+1/2r),

L;= -2,

—Lyy=L,=2+1/r,

—Ly=L,,_,=2-1/r,
wherej=2, ..., n— 1. Application of the trapezoidal rule
to the Riemann integral of the observable N () in Eq. (2.8)
gives the summation weights in Eq. (3.1b),

N =T / (‘g‘wjkji'}')’ (A2)

wherew; =1fori=2,..,n—landw, =0.5fori=1, n.
Similarly, one obtains for the total number of fluorophores,

(A1)

Noalt) =273 ro,Pft).

i=1
The operator L is constructed in such a way that N, (¢)is an
invariant of the reaction-free (K = 0) problem (3.1a),

-‘%Nm ()= 277;;1 iglr,a),L,-ij(t) =0. (A3)
Hence, Eq. (A3) provides a suitable choice for the reflective
boundary conditions at 7 = r, and » = R.

As is shown in Sec. I D, the operator L can be symme-
trized by a similarity transformation and, therefore, has only
real eigenvalues. A simple application of the Gerschgorin
theorem'® shows that L is negative semidefinite. The relation
(A3) requires the existence of a zero eigenvalue and P(0) is the
correspondign eigenvector, i.e.,

LP(0) = 0. (A4)
Furthermore, the operator L fulfills the detailed balance
condition

Ly =Lyn,iLj=1,...,n (AS5)
The (scalar) reaction operator & (r) in Eq. (3.1a) corresponds

to a diagonal matrix K with the diagonal elements
koto =12, ,u—1
kote/2 j=u

0 j=u+1,...,n

Ky = 2toko exp[ — 2r7/(r, — 1)*] (Gaussian profile), (A6)

where the factor 1/2 in the uth diagonal element was intro-
duced empirically to improve the convergence to order r2.

K. (rectangular profile),

U

2. Discretization for the spherical case
Similar to the planar case dimensionless units
t—t /ty, to=S*/D

and the equidistant discretization
rn=—14+(@-16i=1..,n r,=R<l

are chosen. The nonsymmetric tridiagonal matrix L contains

now the elements

Ly, = (/81— A Fr/6

L= —@/8)(1-7),
—L,,=L,,=12/5,
_Lnn =Lnn—1 = _2Ln—ln—l —2Ln~2n——l

Bringer, Peters, and Schulten: Lateral diffusion in membranes

=(2/81 — 12) + 2r, /6,

wherej =2, ..., n — 1. The summation weights are chosen

as
= w/(Za)jkﬁ>,
A j:]

wherew; = 1fori=2,...,n—1 andw, =0.5fori=1,n.
The matrix L conserves the total number of fluorophores,

d n n
5 Nilt)=275°6 3 3 w,L;Py(t) =0.

a j=1i=
Again, P(0) is the stationary solution of the reaction-free
problem and the detailed balance condition (A5) is fulfilled.
The definition of the rectangular intensity profile is identical
to Eq. (A6) whereas the Gaussian profile is defined as

K = 2tokq exp[ — 2(1 4 ;)/(1 + a)].
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