Submitted to July 30, 90
Chem. Phys. Lett.

Biradical Spin Dynamics with Distance-Dependent Exchange Interaction

and Electron Transfer Efficiency

ROBERT BITTL* AND KLAUS SCHULTEN

Beckman Institute and Department of Physics

University of Illinois
Urbana-Champaign, IL 61801, USA

ABSTRACT

The spin dynamics and reaction kinetics of photogenerated zwitterionic biradicals of the
type 2A~ — (CHy)p—2D¥ (n = 8,9, 10) are described for a model which assumes the same
A-D distance dependence for a “through space” exchange interaction and for the efficiency
of electron back-transfer to the singlet ground state 1A-(CHs),-1D and to a triplet excited
state 3A*-(CHg)p-1D. The model is independent of the length n of the polymethylene chain
and accounts well for the three types of observations on the biradicals: the mono-exponential
character of the biradical decay, the life time associated with this decay, and the magnetic

field dependence of the yield of the triplet excited state.
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1. Introduction

In this letter we consider a model for electron transfer processes in organic solvents, an
electron acceptor molecule 1A (pyrene) linked by an aliphatic chain (CHg)y, to an electron
donor molecule 1D (dimethylaniline). This system has been investigated recently experi-

mentallyl~ as well as theoretically®5-8, The reactions follow the scheme
1A - (CH2)n — Ip

N
12A” - (CHp)n - 2D") & 3(2A7 — (CHy), — 2D™)
hy /KS L&p (1.1)
3A* — (CHp), -1D

1A - (CHy), - 1D

The molecules 1A—(CH2)n—1D, dissolved in a polar organic solvent, form after laser exci-
tation of the electron acceptor (1A) a zwitterionic biradical in the singlet overall spin state
1(2A"-—(CHg)n—ZD"'). Here and in the following the superscripts 1, 2, and 3 refer to electron
spin multiplicities, namely, singlet, doublet, and triplet, respectively. Magnetic interactions
lead to the formation of the triplet spin pair state 3(2A~ — (CHp)n—2D7%). Electron tunnel-
ing between acceptor 2A~ and donor 2D+ moieties induces back-transfer either to the singlet
ground state 1A—(CHjy),—1D or to the triplet excited state 3A* — (CHp)p—1D. The reaction
route depends on the radical pair spin state at the moment of the back-transfer: a singlet
biradical state leads to the ground state, a triplet biradical state leads to the triplet excited
state. Experimental investigations of this system monitor spectroscopically the biradical
state and the triplet excited state SA*.

The biradical electron transfer system described constitutes an interesting microcavity
reaction, since the aliphatic chain confines the diffusion-reaction process of 2A~ and 2D+
to a small volume. This confinement implies also that the distance-dependent electron ex-
change interaction acting between 2A~ and 2D* can influence strongly the spin dynamics
and, thereby, the reaction process. In fact, previous calculations®® showed that the ob-
served magnetic field dependence of the yield of triplet products 3A* — (CHs)n—1D can be
reproduced under the assumption of a “through space” exchange interaction. These calcula-

tions modelled the exchange interaction as exponentially decreasing with increasing distance
between 2A~ and 2D*.



In the calculations reported in Refs. 5-8 it had been assumed, however, that the rate
constant for back-electron transfer is independent of the separation of the radical moieties
2A~ and 2D*. This assumption is inconsistent with the spatial dependence assumed for
the exchange interaction which should exhibit the same spatial dependence as the electron
transfer rate. The question arises if the good agreement between theory and observation
reported in Refs. 5-8 may have been fortuitous. The purpose of this letter is to present
calculations that include the proper distance dependence of the electron transfer rate. We
will show, that these calculations describe the observed biradical reaction behaviour actually
very well: they reproduce the observed mono-exponential decay of the biradical state, the
dependence of the observed biradical life time on the length of the (CHs),, chain as well as
the magnetic field dependence of the triplet yield.

The calculations do not have to be calibrated for each length of the polymethylene chain,
1.e. separately for n = 8,9, and 10, but rather a single rate parameter x, (preexponential

constant, see eq. (2.7)) suffices to obtain a good representation for all three biradicals.

2. Theory

2.1. The Stochastic Liouville Equation

We seek to evaluate the density matrix p(r,t) of the electron and nuclear spin states
of the biradical system at distance r. Assuming distance-dependent rates xg(r) and xp(r)
for electron back-transfer the spin density matrix p(r,t) of the biradical obeys a generalized

stochastic Liouville equation
Bep(r,t) = (~HX(r) — K* (1) + LX(r))p(r, 1) (2.1)

The operator H*(r) denotes the Liouville operator associated with the Hamiltonian H(r) of
a doublet pair, i.e. H*(r)p = [H(r), p|-. The Hamiltonian H(r) has the form

H(r)=Hy 4+ Hp+ J(r)(Qr — Qs)

Hi=zaikfik’§i+§-§i, 1=A,D (2.2)
n X

3 = = ]. - —
QT=Z+5A‘SDa QS=Z"‘5A'SD-

We employ the same model of a “through space” exchange interaction as in Ref. 5-8. For

details of the notation employed here the reader is referred to these references. The distance



p 7\

Fig. 1: Schematic diagram of the electronic orbitals (‘(HOMO’ and ‘LUMQ’) of the donor acceptor system
employed to obtain eq. (2.4) for the exchange interaction.

dependence assumed for J(r) is?*
J(r) = Joexp(—ar); Jo=9.46- 109G; a=21362"1 (2.3)

The damping constant « for the exchange interaction assumed here for flexible biradicals is
larger than values of about a = 1471 resulting from experimental investigations of exchange
interactions in other types of bridged diradicals in Ref. 10-13. The larger o value of 2.136A71
used by us is justified by the fact that “through-space” singlet-triplet splitting in an organic
solvent is due to superexchange involving disordered solvent molecules. The disorder, due
to rotational diffusion, manifests itself on a shorter time scale than the spin pair dynamics,
i.e. the solvent-mediated exchange interaction is affected by motional narrowing effects and
might reflect the superexchange interaction in the extreme motional narrowing limit. In this
limit the interaction is intermediate between a value corresponding to optimal overlap of
orbitals between solvent molecules and values corresponding to unfavourable overlaps, i.e.
the interaction should exhibit a faster decay than in case of donor acceptor systems with a

rigid bridge, or donor acceptor pairs in glasses and proteins.

The exchange interaction between the radical moieties in the molecular system of system
Ref. 1-4 should have two major contributions which involve electron transfer between half-
filled orbitals 41 and 14 of donor (2D%) and acceptor (2A7), respectively, and beween
and the filled orbital ¥9 of 2A~. The orbitals are presented in fig. 1 for the ground state 1D

+ 1A. The contributions which arise when the exhange interaction is determined in 2nd and

*We have imployed an o value with four digit accuracy to be compatible with Ref. 9.



3rd order perturbation theory!4 are together

J(r) = _Vig(r)? + Vig(r)? Jing

A0 T T AN 24

In this expression Vj;(r) denotes the transfer matrix element between orbitals i and 7, Jint
denotes the exchange matrix element which describes the splitting between singlet and triplet
excited states in the acceptor (Jipg = E(1A*) — E(3A4*)), A1(r) denotes the energy difference
E(?D* +247) - E(D + 1 4) and As(r) denotes the energy difference E(D* +247) -

E(lD + 1A*). The distance dependence of J(r) is dominated by the exponential decay
2
J

weak algebraic dependence on 7. The simple spatial dependence in eq. (2.3) neglects the

(with increasing 7) of V%(r), the energy denominators A;(r) in comparision exhibit only a
r-dependence of A; and assumes identical spatial decays for V14(r) and Via(r). The latter
assumption appears to be justified since the spatial dependence of Vi4(r) and Via(r) is
governed by overlap between valence orbitals near the edges of donor and acceptor moieties

and, hence, should be approximately the same.

The operator K*(r) in eq. (2.1), given by

K*(r) = kg(r)Q% + rr(r)QF, (2.5)

accounts for the decay of the biradical state. Here the operators Q;",i = S,T are defined
through Q@ p = [Q;, pl+. The functions kg(r) and kp(r) describe the distance-dependent
rate of the electron back-transfer in the singlet and triplet channel, respectively, and will be

discussed below.

The operator L* in eq. (2.1) accounts for the stochastic motion of the polymethylene
chain. In a “mean field” description of the polymer the distribution ¢(r) of distances r

between the unpaired electron spins in the biradical satisfies the Fokker-Planck equation
deq(r,t) = Ur)a(r,t);  U(r) = Darp(r)dy[p(r)] ™. (2.6)

p(r) is the equilibrium distribution of r. In this description L* is the direct product L* =
Z ® I(r) of the identity Liouville operator Z with the Fokker-Planck operator I(r). The
distributions p(r) for the three investigated polymethylene chains, i.e. for n = 8,9, and 10,

as well as the diffusion coefficent D have been given in Ref. 8.



2.2. Distance Dependence of the Electron Transfer Rate

In our previous descriptions of magnetic field-dependent reactions of biradicals we as-
sumed a distance-independent electron transfer efficiency. Recently Busmann et al.4 used a
distance-dependent electron transfer rate described by a step function, while using an expo-
nentially distance-dependent exchange interaction. We want to argue now that the transfer
rate constants for electron back-transfer in the singlet and in the triplet radical pair states
ks(r) and wp(r) should assume the same distance dependence as the“through-space” ex-
change interaction discussed above. In fact, the spatial dependencies of the to rates are
kg(r) ~ V4(r) and kp(r) ~ V(r). However, for the same reasons as for the exchange
interaction one can assume identical spatial dependencies for kg(r) and wp(r). We will

express then both transfer rates through
k(r) = Ko exp(—ar) (2.7)

where the constant « is identical to the one occuring in eq. (2.3) for the distance dependence
of J, i.e. @« = 2.136A~1. The constant k, cannot be obtained directly from theoretical
considerations. The criterion for the choice of k, is the experimentally observed life time of
the biradical state, i.e. we have to choose k, such, that the observed decay of the biradical
state is reproduced. Since the experimental observation shows a mono-exponential decay we
have no information about a difference of the electron transfer rates in the singlet and the

triplet state, respectively. Therefore, we assume kg(r) = kp(r) = &(r).
To determine x, we take the trace over the generalized stochastic Liouville equation, i.e.
eq. (2.1), for the biradical. This eliminates the spin dynamics described by H* and we obtain

the equation which governs the time dependence of the concentration c(r,t) of biradicals in

a conformation with a distance r between the unpaired electron spins
Bye(ryt) = [I(r) = K(r)]e(r, ). (2.8)

The total concentration N(t) of biradicals is N(t) = [¢(r,t)dr. Since the experimental
observation shows a mono-exponential decay of the biradical concentration one expects a
mono-exponential decay for N(t). The decay time is then I{e_j% = [i° dtN(t)/N(t = 0). This
time is identical to the first passage time for the reaction—diffusion system governed by (2.8)

and is given by!®

H;_ﬁl = [{I(r) — k(")) Le(r, t = 0)dr. (2.9)
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Fig. 2: Time dependence of the biradical concentration N (t) for three lengths n = 8,9, and 10 of the
aliphatic chain (CH2), linking donor and acceptor groups. The solution was obtained by numerical inte-
grating eq. (2.8). The linear decrease of the biradical concentration in this logarithmic plot shows that our
calculations reproduce the observed mono-exponential decay.
This expression has to be evaluated numerically. For this purpose one discretizes the distance
7 between the unpaired electron spins. The Fokker-Planck operator ! (r) is then replaced by

a master operator 1 and «(r) is replaced by a diagonal matrix k.

3. Results and Discussion

3.1. Time Dependence of the Biradical Decay

Given Kk, and applying eq. (2.9) allows one to determine the effective life times Teffn =
m;ﬁ%’n for the three lengths of the polymethylene chain (CHs )y, investigated. We have adopted
the ko value 1.3-10%ns~1 which yields the following satisfactory agreement between calculated
and observed life times: (calc.) 7o g = 7.25 ns, T, 9 = 13.75 ns, Teff,10 = 22.75 ns; (obs.)
Tobs,8 = 9 £ 218, Tops9 =14.5+ 1 ns, 74, 10 = 20.5% 0.5 ns.

It is important to note that only a single value of k, is needed to describe the three
biradicals. We want to demonstrate now that our model also reproduces the observed mono-
exponential decay of the biradical concentration. For this purpose we solved eq. (2.8) nu-

merically. In fig. 2 the concentration N(t) of biradicals is plotted logarithmically against the
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Fig. 3: Comparison of triplet yields &7 (B) calculated with an exponentially decaying electron transfer rate
#(r) (—) with triplet yields calculated for distance-independent transfer rates Keff myT = 8,9, and 10 (x).
time t. The linear decay in this representation shows that the biradical concentration, in

fact, decays mono-exponentially for all three chain lengths.
In the next section we will compare the results for the magnetic field dependence of the

triplet yield of the present investigation with the results of our previous investigations which

assumed a distance-independent rate constant for back-transfer.

3.2. Field Dependence of the Triplet Yield

The observable which allows to compare theory and experiment is the magnetic field
dependence of the triplet yield ®7(B)*8. The triplet yield ®(B) is given by

&p(B) = /O > K(r)tr { [~iE* Kt + LX) 7 oyt = o)} dr. (3.1)

Our solution of this equation followed Ref. 8.

In fig. 3 the results of two calculations of triplet yields are compared. The solid lines (—)
represent calculations with the distance-dependent transfer rate x(r) = x, exp(—ar) for the
three lengths n of the polymethylene chain, n = 8,9, and 10, and the crosses (X) represent
calculations with distance-independent transfer rates Keff i Keff 8 = 1.29,Kefr 9 = 13.75,
and Keg 10 = 22.75. The triplet yields calculated with the two different models show no

differences. This implies that the distance dependence of the electron transfer for the three



biradicals investigated does not affect the triplet yield. Since the results for «(r) = Kobs,n
agreed well with the observed magnetic field dependence we can conclude that the chosen
spatial dependence of the rate constant for the back-transfer of electrons is satisfactory.
Further investigations of the field dependence of the triplet yield should not need to envoke
a distance-dependent electron transfer rate since this distance dependence appears to affect

the kinetics of the system only to a negligible extent.

3.3. Conclusions

For a consistent description of the hyperfine coupling induced reaction kinetics of zwitte-
rionic biradical systems we introduced the same spatial dependence for the rate constant of
electron back-transfer and for the exchange interaction. Due to rapid stochastic variations
of the distance between donor and acceptor induced by the Brownian motion of the poly-
methylene chain, the biradical exhibits a mono-exponential decay to products. The effective
life time of the biradical state can be reproduced well using a single rate constant parameter
for the rate constant of electron back-transfer. The stochastic motion of the polymethylene
chain is found to average the decay rates in the various conformations of the biradical to
one effective decay rate; the exchange interaction, however, does not appear to be averaged
to an effective mean value, but rather a broad distribution of exchange interaction strengths

affect the spin dynamics.
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