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Elastic Rod Model of a DNA Loop in the Lac Operon
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We use the theory of elasticity to compute the shape of the DNA loop bridging the gap in the
crystal structure of the lac repressor-DNA complex. The Kirchhoff system of equations with boundary
conditions derived from the crystal structure is solved using a continuation method. This approach can
be applied effectively to find coarse-grained conformational minima of DNA loops.
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Introduction.—The lac repressor is one of the key
enzymes in the lactose digestion chain of E. coli bacteria
[1–4]. The protein turns off the genes responsible for
lactose digestion when lactose is absent from the bacterial
environment. The pioneering studies of this genetic
switch, conducted in the 1950s, led to the fundamental
concept of regulation of genetic activity [1–4].

The lac repressor functions through clamping two out
of three target DNA sites (called the operator sites). The
DNA between the sites is forced to form a loop [5], which
interferes with reading the genes by another protein, the
RNA polymerase [1,2], as shown in Fig. 1. The crystal
structure of the lac repressor-DNA complex has been
reported recently [6]. However, the crystallized protein
holds two disjoint DNA segments, not connected with a
DNA loop as they are in a living cell.

To reproduce the structure of the loop is essential for
two reasons. (i) The repressor-DNA complex must absorb
the stress of the looped DNA. Knowing the structure
of the loop, one can estimate the stress and the resulting
difference between the in vivo and the crystal structure of
the protein-DNA complex. (ii) The DNA loop provides
the scaffold for protein-DNA interactions of the complex
genetic switch, of which the lac repressor is but a part. The
structure of the loop provides a stepping-stone towards the
study of these interactions at the molecular level.

In the present Letter, we predict the shape of the DNA
loop induced by the lac repressor between the operator
sites O1 and O3. We obtain the profiles of the DNA
curvature and twist along the loop and estimate the energy
of the loop and the force exerted by the loop on the
protein-DNA complex. The operator sites are assumed to
be positioned in the same way as the protein-bound DNA
segments in the crystal structure [6].

The DNA in the loop is modeled as a naturally
straight, inextensible elastic rod. Similar models have
been used in Monte Carlo DNA simulations [7–9] and
analytical studies of the conformations of DNA with an
isotropic flexibility [10,11] or zero intrinsic twist [12].
Here we solve the equations of the theory of elasticity
for anisotropically flexible DNA with the natural intrinsic
0 0031-9007�99�83(23)�4900(4)$15.00
twist [13], using a fast, computationally inexpensive
approach that can be used to study DNA conformations
in many protein-DNA systems.

Model.—The structure of the loop is derived from its
elastic properties only, which effectively result from both
internal DNA rigidity and the short-range [14] electro-
static self-repulsion of DNA. The long-range electrostatic
interactions are screened out under physiological salt con-
ditions and result in negligible forces in the case studied,
as shown below. Entropic effects are also neglected since
the studied loop has a length of only 26 nm, which is
about half of the �50 nm persistence length of DNA [15].

The elastic rod, approximating the DNA loop, is
parametrized by its arclength s, according to the classical
Kirchhoff approach [16]. The centers of the cross sections
of the rod at each point s constitute the centerline �r�s�.
The local coordinate frame � �d1�s�, �d2�s�, �d3�s�� determines
the orientation of each cross section. The unit vectors
�d1 and �d2 lie along the principal axes of the DNA cross
section [17]; the vector �d3 is normal to �d1 and �d2. The
components of these vectors can be expressed in terms
of the Euler angles or the Euler parameters [18], which
determine the rotation of the local frame relative to the
lab coordinate system.

The shape of the rod is described in terms of the
curvature k of its centerline and the twist V around the
centerline [16]. The curvature is decomposed into its
components k1 and k2 which account for the bending
of the rod about �d1 and �d2, respectively. The twist is

FIG. 1. The lac genetic switch [3,4] in its (a) active and
(b) inactive states. The lac repressor operator sites are shaded.
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decomposed into the equilibrium (“intrinsic”) twist V0
[13] of the relaxed rod and the unwinding (or overwinding)
dV, so that V � V0 1 dV. The curvatures and the twist
form the vector of strains �k [16], which determines the
spatial rate of rotation of the local coordinate frame along
s:

��di � �k 3 �di , �k � �k1, k2, V� (1)

(the dot denotes the derivative with respect to s).
To complete the geometrical description of the rod, we

use the constraint of inextensibility, which requires that
the normal �d3 coincide with the tangent to the centerline:

��r � �d3 . (2)

The dynamical variables of the model are the elastic
forces �n�s� and torques �m�s�, which are required to be in
equilibrium with all nonelastic forces �f�s� and torques �g�s�
at every cross section in the rod [16]:

��n 1
��f�s� � 0, ��m 1 ��g 1 ��r 3 �n � 0 . (3)

We assume that no body forces or torques act upon the
DNA and disregard the long-range interactions, as stated
above; therefore, �f � 0, �g � 0.

To complete the dynamical description of the rod, we
assume the linear dependence of the elastic torques �m on
the curvatures k1, k2, and the unwinding dV [16]:

�m � A1k1
�d1 1 A2k2

�d2 1 CdV �d3 . (4)

Here C is the DNA twisting modulus, and A1 � aC,
A2 � bC are the moduli of DNA bending about �d1

and �d2, i.e., towards the DNA backbone and grooves,
respectively [17]. We set a � 16�15 and b � 4�15 [19]
to account for the anisotropic flexibility of DNA [9].

Finally, the geometrical equations (1),(2) and the dy-
namical equations (3),(4) are made dimensionless [23]
and combined into a 13th order Kirchhoff system of dif-
ferential equations, as in [24]. The system poses a bound-
ary value problem when supplemented with the location
of the ends of the modeled loop and the orientation of the
DNA cross section at either end, derived from the crystal
structure [6].

The solutions to the system yield the geometry of the
elastic rod [�r�s�, �k�s�] which equilibrates the elastic forces
�n�s� and torques �m�s� and minimizes the energy
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Iterative procedure.—An iterative continuation method
is used to solve the boundary value problem. The
iterations start from a known exact solution, namely,
from that for a self-equilibrated planar circular loop with
coinciding ends and a circular cross section (a � b �
0.5). Then the boundary conditions and the elastic moduli
a and b are changed to achieve the desired values.
Each change is gradually accomplished during a separate
iteration cycle, consisting of a number of iteration steps.
A solution obtained in each step is used as an initial guess
for the next step. The next solution is computed by a
numerical boundary value problem solver COLNEW [25],
which uses a damped quasi-Newton method to construct
the solution as a set of collocating splines.

Three iteration cycles are carried out. First, the far
(s � 1) end of the loop is moved to the correct location.
Second, the far end is rotated to adopt the correct
orientation. Third, the elastic moduli a and b are
changed to the chosen values 16�15 and 4�15. The
resulting numerical solution smoothly connects the DNA
segments in the crystal structure [6] and presents a
minimum of the elastic energy functional (5).

However, the obtained solution is not unique, as the
boundary conditions do not uniquely specify the DNA
linking number (Lk), a topological property combining the
writhe (coiling) of the centerline and the net twist of the
rod [7–12]. In order to find the value of Lk minimizing
the elastic energy (5), we split the continuation procedure
after the second iteration cycle and rotate the far end of
the loop by multiples of 2p around its axis �d3 in a series
of supplementary iteration cycles.

A new solution does emerge after one turn of the far
end. The next turn, however, restores the original solution
due to a self-crossing by the rod during the iterations.
This event, not prevented in our model, reduces the Lk
by 4p and turns out to be more energetically favorable
than going to higher Lk solutions. Further turns of the
far end flip the rod between the two solutions, hence
termed “odd” and “even” according to the number of the
supplementary iteration cycles.

The odd and the even solutions (Fig. 2a) remain differ-
ent through the 3rd and 4th iteration cycles. At the end of

FIG. 2. (a) Elastic DNA loops, resulting from the odd (o) and
the even (e) solutions of Eqs. (1)– (4) bridge the disjoint DNA
segments in the crystal structure [6]. (b) Top view shows that
the odd loop is roughly confined to the plane, perpendicular to
the protein-bound DNA segments.
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the iteration procedure, the odd solution has 14% (3.2 kT)
lower energy than the even solution. Moreover, the even
solution reveals a near self-crossing, which would impose
a high energetic cost had electrostatics been taken into ac-
count. Therefore, from now on we focus on the odd solu-
tion, representing the energy minimum among all possible
DNA conformations.

Structure and energetics of the loop.—The DNA loop
described by the odd solution is nearly confined to the
plane which is perpendicular to the direction of the protein-
bound operator segments (Fig. 2b). This conformation
differs from the smooth curvature model asserted in [6],
where the best-fit plane to the DNA loop is apparently
aligned with the operator segments. Otherwise, both
models share the symmetry with respect to the symmetry
axis of the protein-DNA complex. The loop in [6] is al-
most circular, and the elastic loop obtained here consists of
a semicircle connected by two relatively straight sections
to the operator DNA. Accordingly, the curvature rises in
the middle and near the ends of the loop (Fig. 3).

The elastic energy of the loop amounts to 8.2C�l0 �
23 kT, of which 81% is due to the bending of the loop and
19% is due to the unwinding. This energy is comparable
to the free energy of the DNA looping by the lac repressor,
estimated as 21 kT from [26]. The difference more likely
results from the neglected entropic contribution and the
approximations of our model rather than from significant
discrepancies in the structure of the DNA loop and the
protein clamp. Thus, the crystal structure [6], on which
our model is based, should indeed closely resemble the
in vivo structure of the protein-DNA complex.

The loop is stretched outwards with an average shear
force �n2

1 1 n2
2�1�2 of 16.4C�l2

o � 7.4 pN. The average
tension (compression) n3 of the straight (curved) segments
is 0.9 (3.0) pN. This stress, partially absorbed by the
protein clamp in vivo, should not lead to substantial
changes of the internal DNA structure. For comparison,
a force of 10–15 pN is required to separate the strands
of the double helix [27], and a tension of 50–100 pN,
to cause a DNA structural transition [28]. Hence, the
values of the elastic moduli, measured for less severely
bent DNA [7,21], are adequate here.

To clamp the DNA in the bent state, each protein
subunit should hold its end of the loop with a force of

FIG. 3. Profiles of unwinding dV, curvature k �
q
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and elastic energy density �U (5) along the odd solution.
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15.4 pN, assuming that the forces are similarly directed
in the ends’ coordinate frames and their vector sum yields
the computed stress �n. This estimate is also reasonable.
On one hand, proteins are able to produce such a force,
e.g., the RNA polymerase can pull DNA with a force
of up to 25 pN [29]. On the other hand, the protein
should sustain such a stress without getting unfolded,
which usually requires forces above 100 pN [29].

The combination of the intrinsic DNA twist with the
anisotropic DNA flexibility adopted in our model results in
oscillations of the local structure of the loop (Fig. 3). The
DNA segments bent towards the DNA backbone exhibit
reduced curvature and increased twist, which relieve the
difficult bending. When the backbone turns 90± away from
the main bending direction, the curvature rises, the twist
decreases, and the density of the elastic energy peaks.

Relevance of the method.—The obtained conforma-
tion of the DNA loop is dictated by the local elastic in-
teractions, implicitly including a short-range electrostatic
component. The neglected long-range electrostatics is un-
likely to change significantly the loop conformation be-
cause no remote parts of the loop come close to each other
so that the long-range interactions will be screened out by
physiological salt concentrations. For example, a typi-
cal salt concentration of 0.1M [15] results in the Debye
screening radius l � 10 Å [30], and an all-atom model
of the odd loop reveals no remote [32] phosphate groups
(carrying the DNA negative charge) within 21 Å of each
other. The operator DNA segments are even more distant
and should cause an even lesser electrostatic effect.

However, the long-range electrostatics can have a sig-
nificant influence on DNA conformation under different
salt conditions or when near self-crossings occur. The
latter become more likely for longer loops [7], but one
is observed in our case as well. The closest phosphates
in the discarded even solution come within 6 Å of each
other, resulting in a repulsion of 40 pN. To address such
cases correctly, one should include the screened Coulomb
force in the equations of elasticity, e.g., in the form

��f�s� �
Qr�s�
4pee0

�=
exp�2j�r�s� 2 �Rj�l�

j�r�s� 2 �Rj
, (6)

where r�s� is a smooth function with sharp maxima on
the phosphates, modeling the charge distribution of DNA,
and Q, �R are, respectively, the magnitude and position
of the force-inducing charge. The terms (6) should be
summed over all the external electric charges, as well as
those DNA phosphates which are separated by more than
a certain number Nc of DNA steps from the point s. The
closer phosphates are assumed to be adequately described
by the elastic forces and therefore excluded from the sum.

Our preliminary calculations using this approach [33]
result in the average shift of the loop centerline by 4.9 Å,
or just 2% of the loop length. The average elastic force
n�s� acting on the phosphates changes by 0.25 pN only.
These results justify our initial omission of the long-range
electrostatic forces from the studied problem.
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After including the long-range electrostatics, the
method presented here can be used to study the DNA
conformation and energetics in various biological
systems, e.g., protein-induced DNA loops [5], or nucle-
osomal DNA [34]. If necessary, the elasticity equations
can be modified to account for such DNA properties as
the intrinsic curvature or the sequence-dependent elastic
moduli [9]. The solution of the modified equations may
however require additional iteration cycles during which
the introduced DNA properties would be “turned on.”

The data obtained from thus computed coarse-grained
conformations can be used to study the structurally and
functionally important parts of the biological systems
by higher resolution modeling methods [35]. Such a
multiresolution approach would make the computational
studies of biomolecular aggregates much more feasible.
For example, an all-atom simulation of the whole lac
repressor-DNA complex would be of enormous compu-
tational cost, as the size of the fully solvated complex
amounts to half a million atoms. Yet the repressor head-
piece complexed with the operator DNA can readily be
simulated separately [36], and the force computed here
can be included in such a simulation to account correctly
for the stress on the protein-DNA interface.

In summary, we have applied the theory of elasticity
to find conformational minima of DNA loops using the
continuation method. This approach allowed us to bridge
the gap in the crystal structure of the lac repressor-DNA
complex, revealing a realistic structure of the missing
DNA loop. The results suggest a close similarity between
the repressor-DNA complex in crystal and in vivo. The
presented method opens a path to a multiresolution
approach to the study of protein-DNA systems.
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